期刊文献+

基于遗忘进化规划的Hopfield网学习算法 被引量:6

A Learning Algorithm of Hopfield Neural Network Based on Evolutionary Programming with Forgetting
下载PDF
导出
摘要 本文提出了一个基于遗忘进化规划的Hopfield网学习算法.通过遗忘部分个体,算法能避免局部最小.给定不动点、极限环或迭代序列,通过解不等式,算法能同时获得Hopfield网的拓扑结构和权值.该算法克服了进化Hopfield网学习的局限性.它还能找到多个优化解.实验也证明了该算法的有效性. This paper presents a learning algorithm of Hopfield neural network based on evolutionary programming with forgetting. The algorithm can avoid local minima by forgetting some individuals. Under constraints of fixed points, limit cycles or iteration sequences, the algorithm simultaneously acquires both the topology and weights for Hopfield neural network by solving inequalities. It copes with the limitations of evolving Hopfield learning algorithm. It can also find several optimal solutions. The experimental results also demonstrate the effectiveness of the algorithm.
作者 孟祥武 程虎
出处 《软件学报》 EI CSCD 北大核心 1998年第2期151-155,共5页 Journal of Software
关键词 进化规划 HOPFIELD网 学习算法 神经网络 Evolutionary programming, evolutionary algorithm, Hopfield neural network, forgetting, learning algorithm. Class number\ TP18
  • 相关文献

参考文献4

  • 1Xu Z B,Neural Netw,1996年,9卷,3期,483页
  • 2Yao Susu,Proceedings of the International Conference on Neural Information Processing,1995年,313页
  • 3Li Zheng,General psychology(in chinese),1995年
  • 4Zhang Chengfu,Pattern Recognit Artif Intell,1990年,3卷,1期,14页

同被引文献52

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部