期刊文献+

一种新的车辆图像识别分类算法研究 被引量:2

A Novel Method of Vehicle Classification Based on Image Identification
下载PDF
导出
摘要 提出了一种在静止背景交通图像序列中运动车辆的检测和分类方法,即基于GVF-Snake模型和惯量椭圆的车辆分类算法。利用混和高斯模型(GMM)、期望最大化(EM)估计算法、改进GVF-Snake模型,从序列交通视频图像中检测出运动车辆;然后,借用刚体惯量椭圆原理,计算运动车辆等效椭圆偏心率,从而建立车长-车投影面积-车的等效椭圆偏心率三参数建立了车辆分类器。该方法的车辆检测与分类都是基于数理统计原理,算法复杂度小,可用数字逻辑编程实现,适合在嵌入式系统中应用。 A new approach is proposed to detect and classify the moving vehicle in static scenes, which is based on GVF- Snake model and inertia ellipse. The vehicles contour is extracted from successive traffic-frames by Gaussian Mixture Model, Expectation Maximization estimate algorithm and improved GVF-Snake model. The ellipse eccentricity of the moving vehicle is computed from the principal of inertia ellipse of rigid body. The vehicle classifier is established on the base of three parameters, which are the length of vehicle, the projection area of the vehicle and the equivalent ellipse eccentricity. As the method is based on the principles of statistics, it is quite simple and it can be easily programmed. This method is fit to be applied into the embed system.
出处 《重庆交通大学学报(自然科学版)》 CAS 2008年第6期1142-1145,共4页 Journal of Chongqing Jiaotong University(Natural Science)
基金 重庆市科技攻关资助项目(CSTC2007AC6036) 重庆市自然科学基金资助项目(CSTC2007BB6425)
关键词 混和高斯模型(GMM) GVF—Snake模型 偏心率 GMM (Gaussian Mixture Model) GVF-Snake (Gradient Vector Flow-Snake) Model eccentricity
  • 相关文献

参考文献13

  • 1[1]Madabhu A,Metaxas D N.Combining 10w-,high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions[J].IEEE Trans on Medical Imaging,2003,22(2):155-169.
  • 2[2]Kawamura A,Watanabe N,Okada H,et al.A prototype of neuro-fuzzy cooperation system[J].IEEE Fuzzy,1992:1275-1282.
  • 3刘怡光,游志胜.一种用于图像目标识别的神经网络及其车型识别应用[J].计算机工程,2003,29(3):30-32. 被引量:18
  • 4张旭东,钱玮,高隽,方廷健.基于稀疏贝叶斯分类器的汽车车型识别[J].小型微型计算机系统,2005,26(10):1839-1841. 被引量:6
  • 5[5]Kass M,Witkin A,Terzopoubus D.Snakes:active contour models[J].International Journal o f Computer Vision,1988,1(4):321-331.
  • 6[6]Jacob M,Blu T,Unser M.Efficient energies and algorithms for parametric snakes[J].IEEE Trans on Image Processing,2004,13(9):1231-1244.
  • 7[7]Hou Z Q,Han C Z.Force field analysis snake:an improved parametric active contour model[J].Pattern Recognition Letters,2005,26(5):513-526.
  • 8[8]Xu C,Prince J L.Snake,shapes,and gradient vector flow[J].IEEE Trans on Image Processing,1998,7(3):359-369.
  • 9[9]Tang J S,Acton S T.Vessel boundary tracking for intra vital microscopy via multi-scale gradient vector flow snakes[J].IEEE Trans on Biomedical Engineering,2004,51(2):316-324.
  • 10[10]Tseng B L,Lin C Y,Smith J R.Real-time Video Surveillance for Traffic Monitoring Using Virtual Line Analysis[CD]∥Proceedings of 2002 IEEE International Conference on Multimedia and Expo.,[S.l.]:[s.n.]2002.

二级参考文献15

  • 1-.上海市科技攻关成果鉴定:交通图象处理和语音合成系统技术报告[M].上海市科委,1993,4..
  • 2Guorong X,Proc of 7 Symposium on Transportation System Theory and Application of Advanced Technology,1994年,1134页
  • 3交通图象处理和语音合成系统技术报告,1993年
  • 4姚健超,交通与计算机,1991年,23卷,1期,12页
  • 5Tipping M. The relevance vector machine[A]. In: Solla S A,Leen T K, Muller K-R. Advances in neural information processing systems [M]. Cambridge MIT Press, 2000, 12: 652-658.
  • 6MacKay D J C. Bayesian interpolation[J]. Neural Computation, 1992, 4(3) :415-447.
  • 7MacKay D J C. The evidence framework applied to classification networks[J]. Neural Computation, 1992, 4: 720-736.
  • 8Figueiredo M. Adaptive sparseness for supervised learning[Z].IEEE Transaction on Pattern Analysis and Machine Intelligence, 2003, 25(9):1150-1159.
  • 9Weston J, Watkins C. Multi-class support vector machines[R].Technical Report CSD-TR-98-04, Royal Holloway, University of London, Department of Computer Science, 1998.
  • 10张铃,张钹,吴福朝.对图形识别具有平移、旋转、伸缩不变性的神经网络[J].计算机学报,1998,21(2):127-136. 被引量:12

共引文献41

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部