期刊文献+

小学六年级儿童估算的概念理解(英文) 被引量:2

The Sixth Graders' Conceptual Understanding about Computational Estimation in Primary School
下载PDF
导出
摘要 采用三种自行设计的任务考察了小学六年级儿童对估算的概念理解.从一所普通小学随机抽取的69名被试参加了本实验.结果表明:①小学儿童获取的有关估算的概念性知识与程序性知识明显多于条件性知识;②概念性知识与条件性知识的掌握水平之间存在显著正相关;③只有概念性知识的掌握水平明显制约了高、低组儿童的估算表现差异.文中对上述结果及其在小学数学中的教学含义进行了讨论. Using three self-designed tasks, this paper investigated the sixth graders' conceptual understanding about computational estimation in Chinese primary school. 69 children randomly sampling from an ordinary primary school participated in this study. The results showed that ① primary school children gained much more conceptual knowledge and procedural knowledge than conditional knowledge about computational estimation; ② there was a significant correlation in the level of mastery between conceptual knowledge and conditional knowledge; and ③ only the level of conceptual knowledge contributed significantly to the difference of computational estimation performance between the high-level group and the low-level group. The results and their implications for the instruction of mathematics in primary school were also discussed.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期95-101,共7页 Journal of Southwest China Normal University(Natural Science Edition)
基金 Young Project of Ministry of Education in the Tenth Five-year National Education Science Plan of China(authorized number:EBA030406) Mount Tai Scholar Project of Shandong Province International Cooperation and Cultivation Project for Excellent Middle-age and Youthful Core College Faculty of Shandong Provincial Education Depart ment.
关键词 概念理解 估算 小学儿童 conceptual understanding computational estimation primary school children
  • 相关文献

参考文献27

  • 1Carpenter T P, Coburn T G, Reys R E, et al. Notes From National Assessment: Estimation [J]. Arithmetic Teacher, 1976, 23 (4): 296--302.
  • 2Carpenter T P, Corhitt M K, Kepner H S, et al. National Assessment: A Perspective of Students' Mastery of Basic Mathematics Skills [C]//M. M. Lindquist (Ed.), Selected issues in mathematics education. Reston, VA: NCTM, 1980:215 -- 257.
  • 3Levine D R. Strategy use and Estimation Ability of College Students [J]. Journal for Research in Mathematics Education, 1982, 13(5): 350--359.
  • 4Reys R E, Rybolt J F, Bestgen B J, et al. Processes Used by Good Computational Estimators [J]. Journal for Research in Mathematics Education, 1982, 13(2) : 183 -- 201.
  • 5Rubenstein R N. Computational Estimation and Related Mathematical Skills [J]. Journal for Research in Mathematics Education, 1985, 16(2) : 106 -- 119.
  • 6Sowder J T. Estimation and Related Topics [C]//D. A. Grouws (Ed.), Handbook of research in mathematics teaching and learning. NY: Macmillan, 1992:371--389.
  • 7Dehaene S, Cohen L. Two Mental Calculation Systems: A Case Study of Severe Acalculia With Preserved Approximation [J].Neuropsyehologia, 1991, 29(11): 1045--1054.
  • 8Dehaene S, Spelke E, Pinel P, et al. Sources of Mathematical Thinking: Behavioral and Brain-imaging Evidence [J]. Science, 1999, 284(5416) : 970- 973.
  • 9Dowker A D, Flood A, Griffiths H, et al. Estimation Strategies of Four Groups [J]. Mathematical Cognition, 1996, 2 (2) : 113 - 135.
  • 10LeFevre J, Greenham S L, Waheed N. The Development of Procedural and Conceptual Knowledge in Computational Estimation [J]. Cognition and Instruction, 1993, 11(2) : 95 - 132.

二级参考文献24

  • 1罗跃嘉,南云,李红.ERP研究反映感数与计数的不同脑机制(英文)[J].心理学报,2004,36(4):434-441. 被引量:8
  • 2张厚粲,郑日昌.关于认知方式的测验研究——对我国大、中、小学生场依存性特征的调查分析[J].心理科学通讯,1982,5(2):14-18. 被引量:33
  • 3王建,汪安圣.认知心理学[M].北京:北京大学出版社,1992:321-327.
  • 4Evans B T, Lynch J S. Matching Bias in the Selection Task [J]. British Journal of Psychology, 1973, 64:391-397.
  • 5Evans B T. Logic and Human Reasoning: An Assessment of the Deduction Paradigm [J]. Psychological Bulletin, 2002,128(6): 978-996.
  • 6O' Daffer, P, A case and techniques for estimation: Estimation experiences in elementary school mathematics - essential, not extra! Arithmetic Teacher, 1979,26 (6) : 46 - 51
  • 7Sowder, J. Estimation and related topics. In: D.A. Grouws. (Ed.). Handbook of research in mathematics teaching and learning. NY: Macmillan, 1992 : 371 - 389
  • 8Newman, R. S. Children's numerical estimation: Flexibility inthe use of counting. Journal of Educational Psychology, 1984,76( 1 ) : 55 - 64
  • 9Dehaene, S. The number sense: How the mind creates mathematics. New York: Oxford University Press, 1997
  • 10Siegler , R. S., & Opfer, J. The development of numercal estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 2003,14(3) :237 - 243

共引文献13

同被引文献26

  • 1司继伟,张庆林.估算:来自心理学的声音[J].心理科学,2002,25(2):240-241. 被引量:8
  • 2耿柳娜,陈英和.数学焦虑对儿童加减法认知策略选择和执行的影响[J].心理发展与教育,2005,21(4):24-27. 被引量:29
  • 3张云仙,司继伟.大学生的认知方式对其估算能力的影响[J].西南师范大学学报(自然科学版),2007,32(3):168-171. 被引量:9
  • 4吴心馨.杨德清.(2006).国一学生在情景与纯数字问题之估算策略的研究.中华民国第22届科学教育学术研讨会.台北.
  • 5Ashcraft, M. H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current Directions in Psychological Science, 11, 181 - 185.
  • 6Ashcraft, M. H., & Faust, M. W. (1994). Mathematies anxiety and mental arithmetic perfommnee: An exploratory investigation. Cognition and Enmtion, 8, 97 - 125.
  • 7Ashcraft, M. H. , Krause, J. A. , & Hopko, D. R. (2007). Is matll anxiety a mathematical learning disability? In D. 13. Berch& M.IM. M. Mazzocco (Eds.), Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (pp. 329 - 348). Baltimore: Brookes.
  • 8Dehaene, S. (2003). The neural basis of the Weber Feehner law: a logarithmic mental number line. Trends in Cognitive Sciences, 7, 145 - 148.
  • 9Dowker, A. ( 1997 ). Young children ' s addition estimates. Mathematical Cognition, 3, 140 - 153.
  • 10Eysenck, M. W. , & Calvo, M. G. ( 1992 ). Anxiety and performance: The processing efficiency theory. Cognition and Emotion, 6, 409-434.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部