摘要
BP神经网络作为较成熟的技术已被应用于入侵检测技术中,但遇到的诸如执行速度慢、易陷入局部最小值等问题限制了其检测性能的提高,而RBF(Radial Basic Functions径向基函数)神经网络在逼近能力、学习速度及分类能力上都优于BP神经网络。本文设计了一个基于RBF的入侵检测模型,确定了RBF神经网络的结构和学习算法后,用KDD99数据集中的训练数据对系统进行训练,最后,用测试数据对系统进行测试。仿真试验表明,该系统最终具有较高的检测率和很低的误报率。
出处
《网络安全技术与应用》
2008年第12期36-38,共3页
Network Security Technology & Application