期刊文献+

一般混合似变分不等式组的迭代算法 被引量:1

Iterative method for a system of general mixed guasi-variational inequalities
下载PDF
导出
摘要 对一类新包含n个不同非线性算子和n个不同二元泛函的一般混合似变分不等式组进行了研究;利用预解算子技巧,给出了一个求解这种一般混合似变分不等式组的显式n步迭代算法,并证明了该算法在适当的条件下收敛. In this paper,we studied a new system of general mixed quasi -variational inequalities involving n different nonlinear operators and n different continuous bifunctions. Using the resolvent operator technique, we suggested and analyzed a new explicit n - steps iterative method for this system of general mixed quasi - variational inequalities. The new iterative method converged under certain mild conditions.
作者 姚莉
出处 《重庆工商大学学报(自然科学版)》 2008年第6期560-563,共4页 Journal of Chongqing Technology and Business University:Natural Science Edition
关键词 变分不等式组 显式迭代算法 松弛强制映射 Lipschitzian连续 a system of variational inequalities explicit iterative method relaxed coercive mapping Lipschitzian continuity
  • 相关文献

参考文献4

  • 1闻道君,万波.一般非线性变分不等式组的两步投影算法[J].重庆工商大学学报(自然科学版),2007,24(6):547-550. 被引量:2
  • 2万波.混合似变分不等式的一个新预解算法[J].重庆工商大学学报(自然科学版),2007,24(5):467-469. 被引量:3
  • 3CHANG S S, JOSEPH LEE H W, CHAN C K. Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces[J ]. Appl. Math. Lett ,2007,20:329 -334.
  • 4Huang Z Y, NOOR M A. An explicit projection method for a system of nonlinear variational inequalities with different (γ ,τ) - cocoercive mappings [J]. Applied Mathematics and Computation,2007,190 ( 1 ) : 356 - 361.

二级参考文献10

  • 1NOOR M A. Mixed quasi variational inequalities[J].Applied Mathematics and Computation,2003,146:553- 578
  • 2DING X P. Existence of Solutions and an Algorithm for Mixed Variational- Like Inequalities in Banach Spaces[J].Journal of Optimization Theory and Appllcations,2005,127 (2) :285 - 302
  • 3NOOR M A. Resolvent Algorithms for Mixed Quasivariational Inequalities [ J ]. Journal of Optimization Theory and Applications ,2003,119 ( 1 ) : 137 - 149
  • 4NOOR M A. Proximal Methods for Mixed Quasivariational Inequallties[J]. Journal of Optimization Theory and Applications, 2002,115(2) :453 -459
  • 5VERMA R U. Projection Methods, Algorithms, and a New System of Nonlinear Variational Inequalities [ J ]. Computers and Mathematics with Application,2001,41:1 025 - 1 031
  • 6NIE H,LIU Z,KIM K H,et al. A system of nonlinear variational inequalitlses involving strongly monotone and pseudocontractive mappings [ J ]. Adv Nonlinear Var. Inequal, 2003,6 (2) :91 - 99
  • 7VERMA R U. Generalized system for relaxed cocoercive variational inequalities and its projection methods[J]. J Optim Theory Appl,2004 ,121 ( 1 ) :203 - 210
  • 8VERMA R U. General converenee analysis for two - step projection methods and applications to variational problems [ J ]. Appl Math Lett,2005 (18) : 1286 - 1292
  • 9CHANG S S,JOSEPH LEE H W,CHAHN C K. Generalized system for relaxed cocoercive variational inequalities in Hibert spaces [ J ]. Appl Math Lett,2007,20:329 - 334
  • 10HUANG Z Y, NOOR M A. An explicit projection method for a system of nonlinear variational inequalities with different( γ, r) - cocoercive mappings[J]. Applied Mathematics and Computation ,2007( 1 ) :32

共引文献3

同被引文献4

  • 1NOOR M A. Projection-proximal methods for general variational inequalities [J]. J. Math. Anal. Appl,2006 ,318 :53-62.
  • 2NOOR M A. Proximal Methods for Mixed Quasivariational Inequalities [ J ]. Journal of Optimization Theory and Applications,2002, 115(2) :453-459.
  • 3NOOR M A, NOOR K I. On General Mixed Quasivariational Inequalities [ J ]. Journal of Optimization Theory and Applications, 2004,120(3) :579-599.
  • 4DING X P, LUO C L. Perturbed Proximal point algorithms for general quasi - variation - like inclusions [ J ]. J. Comput. Appl. Math,2000,113 : 153-165.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部