期刊文献+

基于图像边缘检测方法的暂态电力扰动检测 被引量:2

Transient Power Disturbance Detection Based on Image Edge Detection Theory
下载PDF
导出
摘要 应用数字图像边缘检测理论,提出了基于数学形态学的暂态电力扰动检测和时间定位方法.该方法根据正常情况下和扰动情况下电力信号变化的不同特点,采用图像边缘检测算子获取电力扰动发生时信号'阶梯变化'产生的奇异点,并采取形态滤波、优化采样频率和结构元素长度等措施抑制信号噪声和正常情况下信号'斜坡变化'对扰动检测的影响,提高检测灵敏度.算法实现简单,计算量小,定时精度高,实时性好,对硬件要求低.对多种常见暂态电力扰动的仿真检测,验证了所提方法的可行性和有效性. By applying digital image edge detection theory, this paper presented a new method for transient power disturbance detection based on mathematical morphology. The different characteristics between normal power signals and the signals under disturbing conditions were compared, and the signal singular points, which are caused by the signal "step change" at the disturbing moment, were detected by image edge detecting opera- tor. In order to reduce the impact of noises and the signal "ramp change" under normal conditions, some useful means were employed, such as morphological filtering, optimal decision of sampling rate and structure element length. As a result, the detecting sensitivity is improved greatly. Detecting simulations of common transient power disturbance were performed, and the simulation results verify the outstanding features of the method: easy implementation, less computing complexity, high time resolution and low demand of hardware.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第12期37-41,共5页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(50677014) 湖南省电力科技攻关资助项目(20030301)
关键词 电能质量 扰动 数学形态学 数字图像 边缘检测 power quality power disturbance mathematical morphology digital image edge detection
  • 相关文献

参考文献10

二级参考文献33

  • 1林湘宁 刘沛 刘世明 等(Lin Xiangning Liu Pei Liu Shiming et al).电力系统超高速保护的形态学-小波综合滤波算法(A novel integrated morphology wavelet filter algorithm used for ultra high speed protection of power systems)[J]..
  • 2[1]Angrisani L, Daponte P, Apuzzo M D. A measument method based on the wavelet transform for power quality analysis[J]. IEEE Trans Power Delivery, 1998, 13(4):990-998.
  • 3[2]Huang S J, et al. Application of morlet wavelets to supervise power system disturbances[J]. IEEE Trans Power Delivery, 1999, 14(1):235-243.
  • 4[3]Gaouda A M,et al. Power quality detection and classification using wavelet-multiresolution signal decomposition[J].IEEE Trans. Power Delivery, 1998, 14(4):1469-1476.
  • 5[4]Application of multiresolution signal decomposition for monitoring short-duration variations in distribution systems[J]. IEEE Trans Power Delivery, 2000, 15(2):478-485.
  • 6[5]Santoso S, Powers E J, et al. Power quality disturbance waveform recognition using wavelet-based neural classifier?Part 1: theoretical foundation, Part 2: application[J]. IEEE Trans Power Delivery, 2000, 15(1):222-235.
  • 7[6]Poisson O, Rioual P, Meunier M. Detection and measurement of power quality disturbances using wavelet transform[J].IEEE Trans Power Delivery, 2000, 15(3):1039-1044.
  • 8[7]Karimi M, Mokhtari H, Iravani R. Wavelet based on-Line disturbance detection for power quality applications[J]. IEEE Trans Power Delivery, 2000, 15(4):1212-1220.
  • 9[8]Vetterli M, Herley C, Wavelets and filter banks: theory and design[J]. IEEE Trans Signal Process, 1992, 40(9):2207-2232.
  • 10[9]Sweldens W. The Liftinging scheme: a custom-design construction of biorthogonal wavelets[J]. J. Appl. and Comput. Harmonic Analysis, 1996, 3(2):186-200.

共引文献417

同被引文献28

引证文献2

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部