期刊文献+

基于改进RBF神经网络的数字调制识别 被引量:2

Digital Modulation Recognition Based on an Improved Method of RBF Neural Network
下载PDF
导出
摘要 针对数字调制信号自动识别中分类器的设计,通过将决策树的方法应用到RBF中心的确定中,解决了常用算法计算量大、收敛速度慢的问题,提高了网络的学习精度和训练速度,将其应用到常用的7种数字调制信号(2ASK,4ASK,BPSK,QPSK,2FSK,4FSK,16QAM)的自动识别中,取得了好的结果。经仿真表明,使用该方法构造的神经网络,具有易于构造、可理解性好、收敛速度快且构造的网络规模较小的特点,适于工程应用。 A novel algorithm for automatic recognition of digital modulation is proposed to solve such issues as lower accuracy of RBF and slow training speed using normal method. The algorithm based on decision tree of RBF neural network used in the center determination to improve the accuracy and the learning speed of the neural network. The use of the method in the automatic recognition of 7 digital modulation signals obtains better result. The simulation results show that it works well in digital modulation recognition (2ASK,4ASKBPSK, QPSK,2FSK, 4FSK, 16QAM). The neural network designed by this method is easy constructed, well understood and fast converged, and has small network scale, so it is adaptable to engineering applications.
出处 《无线电通信技术》 2008年第6期38-40,共3页 Radio Communications Technology
关键词 RBF神经网络 决策树 数字调制识别 特征提取 RBF neural network decision tree digital modulation recognition feature extraction
  • 相关文献

参考文献6

二级参考文献26

  • 1A Д亚历山大洛夫等 王元等(译).数学--它的内容、方法和意义,第三卷[M].北京:科学出版社,1962..
  • 2[1]NAGY P A J.A modulation classifier for multi channel systems and multi transmitter situations[ ].Proc MILCOM'94,1994,816-820.
  • 3[2]MCMILLAN Stanton B,FLANAGAN Brrian P,DOONG Tom K.Determination of the modulation type of communication signals[J].I CASSP-90,1990,3:1 683-1 686.
  • 4[3]HONG Liang,HO K C.Identification of digital modulation types using the wavelet transform[J].Military Communications Conference Proceedings,IEEE,1999,1:427-431.
  • 5[4]DAVY Manuel.Improved optimization of time-frequency-based signal classifiers[J].IEEE Signal Processing Letters,2001,8 (2):52-57.
  • 6[5]BEIDAS B F,WEBER C L.Higher-order correlation-based approach to modulation classification of digitally modulated signals[J].Selected Areas in Communications,IEEE Journal on,1995,13(1):89-101.
  • 7[6]CHENG Qian-sheng.The hilbert transform and the instantaneous phase,instantaneous frequency[J].BGP,1979,3:1-14.
  • 8[8]HAYKIN S.Neural networks:a comprehensive foundation[M].Maxwell Macmillan,1995.
  • 9Chan Y T.Wavelet Basics[M].Kluwer Academic Publishers,1995.
  • 10Liang H,Ho K C.Identification of digital modulation types using the wavelet transform[A].Military Communications Conference Proceedings[C].Atlantic,NJ,IEEE,1999.

共引文献115

同被引文献15

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部