期刊文献+

二进脊波变换的高光谱遥感图像融合分类

Fusion classification of hyperspectral remote sensing images by dyadic ridgelet transform
下载PDF
导出
摘要 将二进脊波变换应用到高光谱遥感图像的数据融合中,并针对该算法的特点,提出了将变换数据分成两部分分别进行融合的融合算法,即将经过二进小波行变换的图像数据进行划分,对于包含图像概貌特征的低频数据进行归一化方差加权融合,对于包含图像边缘、直线等细节特征的高频数据选择各波段数据对应像素点小波系数绝对值最大者作为融合后该像素点的像素值.对标准的AVIR IS高光谱遥感图像实现了数据融合,并在此基础上完成了对高光谱遥感图像的分类.实验结果表明,无论是从直观上还是从数值结果上来看,该方法能有效地实现高光谱遥感图像的数据融合与分类. Dyadic ridgelet transform can improve fusion classification of hyperspectral remote sensing images. A new fusion algorithm was developed to take maximum advantage of the characteristics of this new transform by dividing image data into two parts by applying dyadic wavelet transform to each row of the image. For low spectrum band da- ta, which contain rough and panoramic characteristics of the image, the norm square error of each band of the hypersprctral data was chosen to weight the fusion algorithm. For high spectrum band data, which contain the salient features ( edges, lines, etc. ), the largest ( absolute value) wavelet coefficients of the entire bands of hyperspectral data at each pixel point were selected as the fused coefficient at the corresponding pixel point. The proposed fusion algorithm was applied to standard AVIRIS hyperspectral remote sensing images, and the images were classified. The results showed, both visually and numerically, that the proposed transform and data fusion algorithm can effectively achieve fusion classification of hyperspectral remote sensing images.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2008年第11期1222-1226,共5页 Journal of Harbin Engineering University
基金 高等学校博士学科点基金资助项目(20060217021) 黑龙江省自然科学基金资助项目(ZJG0606-01)
关键词 二进脊波变换 有限Randon变换 高光谱 融合分类 dyadic ridgelet transform finite Randon transform hyperspectral fusion classification
  • 相关文献

参考文献10

  • 1刘春红,赵春晖.基于提升算法的超谱遥感图像融合分类研究[J].哈尔滨工程大学学报,2004,25(6):794-798. 被引量:3
  • 2CHEN Tao, ZHANG Junping, ZHANG Ye. Remote sensing image fusion based on ridgelet transform [ C ]// Geoscience and Remote Sensing Symposium. Seoul, Korea, 2005: 1150-1153.
  • 3CANDES E J. Ridgelets: Theory and Application [ D ]. Stanford : Stanford University, 1998.
  • 4黄建平,王卫卫,宋国乡.基于二进脊波变换的图像去噪[J].计算机工程与应用,2006,42(5):69-70. 被引量:1
  • 5MALLAT S, ZHONG S. Characterization of signals from multiscale edges[ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1992, 14(7) : 710-732.
  • 6ZHANG Xinman, HAN Jiuqiang, LIU Pengfei. The finite ridgelet image fusion scheme by combining remote sensing images[ C]//Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China, 2006 : 9519 - 9522.
  • 7MINH N D, VETrERLI M. The finite ridgelet transform for image representation[ J]. IEEE Trans on Image Processing, 2003, 12(1) :16-27.
  • 8ARIVAZHAGAN S. GANESAN L, SUBASH, T G. Texture classification using ridgelet transform[ C ]// Proceedings of 6th International Conference on Computational Intelligence and Multimedia Applications. Las Vegas, USA. 2005: 321- 326.
  • 9LANDGREBE D. Multispectral data analysis: a signal theory perspective [ EB/OL]. [ 1998 -04 ]. Purdue University, Available at: http://www. ece. purdue.edu./-biehl/ MuhiSpec/Signal_Theory. pdf.
  • 10童庆喜,张兵,郑兰芬.高光谱遥感-原理、技术与应用[M].北京:高等教育出版社,2006:1-415.

二级参考文献13

  • 1郭宝龙,郭雷.视觉运动计算的新方法[J].西安电子科技大学学报,1994,21(4):457-463. 被引量:11
  • 2Hou Biao,Jiao Li-cheng,Liu Fang.Image denoising based on ridgelet[C]. In :ICSP'02 Proceedings, 2002 : 780-783.
  • 3Mallat S,Zhong S.Characterlzation of signals from multiscale edges[J]. IEEE Tran on Pattern Analysis and Machine Intelligence,1990;12: 629-639.
  • 4SWELDENS W. Lifting scheme: A custom-design construction of biorthogonal wavelets[J]. Applied and Computational Harmonic Analysis, 1996, 3(2): 186-200.
  • 5KOVACEVIC J, SWELDENS W. Wavelet families of increasing order in arbitrary dimensions[J]. IEEE Transactions on Image Processing, 2000, 9(3): 480-496.
  • 6JAWERTH B, SWELDENS W. Overview of wavelet based multiresolution analyses[J]. SIAM Review,1994, 36(3): 377-412.
  • 7INGRID D, SWELDENS W. Factoring wavelet transforms into lifting steps[J]. Journal of Fourier Analysis, 1998,4(3):247-269.
  • 8ASNER G P, HEIDEBRECHT K B. Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: Comparing multispectral and hyperspectral observations[J]. International Journal of Remote Sensing, 2002, 23(19): 3939-3958.
  • 9SHAW G, MANOLAKIS D. Signal processing for hyperspectral image exploitation[J]. IEEE Signal Processing Magazine,2002, 19(1): 12-16.
  • 10RICK L, ANDREW B. Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis[J]. Remote Sensing of Environment, 2004, 90(3): 331-336.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部