期刊文献+

局部凸空间中的绝对收敛级数研究

A study on absolutely convergent series in locally convex spaces
下载PDF
导出
摘要 在局部凸空间中建立了级数绝对收敛的概念,使得原本在赋范线性空间中的简单定义得到推广.在局部凸空间中得到了绝对收敛级数的等价性质,利用该局部凸空间的对偶空间中的等度连续集来完成对绝对收敛级数的等价描述.更进一步得到结论:利用从该局部凸空间到另一个局部凸空间的连续线性算子空间中的等度连续集也可以完成对绝对收敛级数的等价刻画.同时,在局部凸的准范空间中研究了绝对收敛级数,得到了级数的绝对收敛与空间上的准范数的一种内在联系. The concept of absolute convergence for series, a previously simple concept in normed spaces, was generalized to locally convex spaces. In addition, the equivalent characterization for an absolutely convergent series in locally convex spaces was obtained, in which an equicontinuous set in the duality of the locally convex spaces was employed to characterize the absolutely convergent series. Then this result was generalized to an equicontinuous set in the space of all continuous linear operators from the locally convex space to another locally convex space. Meanwhile, absolutely convergent series were researched in paranormed locally convex spaces and an interrelationship between absolutely convergent series and the paranorm in the space was established .
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2008年第11期1236-1240,共5页 Journal of Harbin Engineering University
基金 哈尔滨工程大学基础研究基金资助项目(002110260728)
关键词 局部凸空间 绝对收敛 等度连续 准范空间 locally convex space absolute convergence equicontinuous paranormed space
  • 相关文献

参考文献9

  • 1LI R, YANG Y, SWARTZ C. A general Orlicz-Pettis theorem[J]. Studia Sci Math Hungarica, 2006, 43(1): 47-60.
  • 2WU J, LU S. A general Orlicz-Pettis theorem[J]. Taiwan Residents J Math, 2002(6) : 433-440.
  • 3LI R, BU Q. Locally convex spaces containing no copy of c0[J]. J Math Anal Appl, 1993, 172(1): 205-211.
  • 4ROLEWICZ S. Metric linear spaces[M]. Warsaw: Polish Scientific Publishers, 1984: 155-315.
  • 5杨云燕.关于级数的绝对收敛[J].哈尔滨工业大学学报,2005,37(8):1113-1115. 被引量:3
  • 6杨云燕,李容录.局部凸空间中的子级数收敛与绝对收敛[J].黑龙江大学自然科学学报,2006,23(3):322-325. 被引量:1
  • 7WILANSKY A. Modem methods in topological vector spaces[ M ]. New York : McGraw-Hill, 1978 : 24-137.
  • 8SWARTZ C. Infinite matrices and the gliding hump[ M]. Singapore: World Scientific, 1996: 10-131.
  • 9KOTHE G. Topological Vector Spaces Ⅰ [M]. Berlin: Springer-Verlag, 1969: 128.

二级参考文献11

  • 1LI R L, BU Q Y. Locally convex spaces containing no copy of c0 [J]. J Math Anal Appl, 1993, 172(1):205-211.
  • 2ANTOSIK P, SWARTZ C. Matrix methods in analysis[J]. Lecture Notes in Math Springer- Verlag, 1985,1113.
  • 3WILANSKY A. Modem Methods in Topological Vector Spaces [ M ]. New York:McGraw - Hill, 1978.
  • 4ROLEWICZ S. On unconditional convergence of linear operators [ J ]. Demonstratio Mathematica, 1988, 21 :835 - 842.
  • 5THORP B L D. Sequential-evaluation convergence [ J ].J London Math Soc, 1969,44:201 -209.
  • 6LI R L, SWARTZ C. Spaces for which the uniform boundedness principle holds [ J ]. Studia Sci Math Hungar, 1992,27:379-384.
  • 7WILANSKY A. Modem Methods in Topological Vector Spaces[ M]. McGraw - Hill, 1978.
  • 8ROLEWICZ S. Metric Linear Spaces[ M]. Warsaw:Polish Sci Publ, 1984.
  • 9LI R L, BU Q Y. Locally convex spaces containing no copy of c0 [ J]. J Math Anal Appl, 1993,172( 1 ) : 205 -211.
  • 10ANTOSIK P, SWARTZ C. Matrix Methods in Analysis,Lecture Notes in Math,1113 [ M]. Springer- Verlag, 1985,

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部