摘要
针对简单量子遗传算法在优化高维问题寻优速度慢、收敛率低的缺陷,提出一种改进的量子遗传算法,通过搜索各种群中最优染色体组成当前最优个体,并依此个体来确定量子门的全局最优搜索方向。将改进算法用于优化小波神经网络,藉此建立了4-CBA浓度的软测量模型。仿真结果表明:与简单量子遗传算法相比,改进算法对复杂优化问题具有全局快速寻优性能。
Improvements were made for quantum genetic algorithm to cope with the defect of optimization rate and inefficient convergence. By searching the excellent genome of all colonies, the best unit is built. And the optimal search direction was decided according to the unit. The improved algorithm is used to optimize wavelet neural network, and then is applied in the soft sensor models of 4-CBA concentration. The simulation result of complex optimal problem indicates that the improved algorithm has better performance of optimization rate and efficiency.
出处
《华东理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2008年第6期850-853,共4页
Journal of East China University of Science and Technology
基金
国家杰出青年科学基金(60625302)
国家自然科学基金面上项目(60704028)
国家863计划课题(2006AA04Z168
2007AA04Z192)
上海市科委项目(07JC14016
08DZ1123100)
长江学者和创新团队发展计划资助(IRT0721)
上海市重点学科建设项目资助(B504)
上海市国际科技合作基金项目(08160710500)
关键词
量子遗传算法
小波变换
小波神经网络
小生境
软测量
quantum genetic algorithm
wavelet transform
wavelet neural networks
niche
soft sen-SOF