期刊文献+

High extracellular potassium ion concentration attenuates the blockade action of ketanserin on Kv1.3 channels expressed in xenopus oocytes

High extracellular potassium ion concentration attenuates the blockade action of ketanserin on Kv1.3 channels expressed in xenopus oocytes
原文传递
导出
摘要 Background Ketanserin (KT), a selective serotonin (5-HT) 2-receptor antagonist, reduces peripheral blood pressure by blocking the activation of peripheral 5-HT receptors. In this study electrophysiological method was used to investigate the effect of KT and potassium ion on Kv1.3 potassium channels and explore the role of blocker KT in the alteration of channel kinetics contributing to the potassium ion imbalances. Methods Kv1.3 channels were expressed in xenopus oocytes, and currents were measured using the two-microelectrode voltage-clamp technique. Results KCI made a left shift of activation and an inactivation curve of Kv1.3 current and accelerated the activation and inactivation time constant. High extracellular [K^+] attenuated the blockade effect of KT on Kv1.3 channels. In the presence of KT and KCI the activation and inactivation time constants were not influenced significantly no matter what was administered first. KT did not significantly inhibit Kv1.3 current induced by tetraethylammonium (TEA). Conclusions KT is a weak blocker of Kv1.3 channels at different concentrations of extracellular potassium and binds to the intracellular side of the channel pore. The inhibitor KT of ion channels is not fully effective in clinical use because of high [K^+]. and other electrolyte disorders. Background Ketanserin (KT), a selective serotonin (5-HT) 2-receptor antagonist, reduces peripheral blood pressure by blocking the activation of peripheral 5-HT receptors. In this study electrophysiological method was used to investigate the effect of KT and potassium ion on Kv1.3 potassium channels and explore the role of blocker KT in the alteration of channel kinetics contributing to the potassium ion imbalances. Methods Kv1.3 channels were expressed in xenopus oocytes, and currents were measured using the two-microelectrode voltage-clamp technique. Results KCI made a left shift of activation and an inactivation curve of Kv1.3 current and accelerated the activation and inactivation time constant. High extracellular [K^+] attenuated the blockade effect of KT on Kv1.3 channels. In the presence of KT and KCI the activation and inactivation time constants were not influenced significantly no matter what was administered first. KT did not significantly inhibit Kv1.3 current induced by tetraethylammonium (TEA). Conclusions KT is a weak blocker of Kv1.3 channels at different concentrations of extracellular potassium and binds to the intracellular side of the channel pore. The inhibitor KT of ion channels is not fully effective in clinical use because of high [K^+]. and other electrolyte disorders.
出处 《Chinese Medical Journal》 SCIE CAS CSCD 2008年第24期2584-2591,共8页 中华医学杂志(英文版)
关键词 KETANSERIN Kv1.3 potassium channel potassium ion IMMUNOMODULATION electrolytes imbalances channel kinetics ketanserin Kv1.3 potassium channel potassium ion immunomodulation electrolytes imbalances channel kinetics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部