期刊文献+

一类捕食模型的非负平衡点的全局渐近稳定性 被引量:2

Global Stability of Nonnegative Equilibriums for a Class of Prey-Predator Models
下载PDF
导出
摘要 主要研究一类具有Holling-Ⅱ型响应函数的捕食模型的非负平衡解问题,讨论了当参数满足适当条件时,非负平衡点的全局渐近稳定性. This paper studies nonnegative equilibriums for prey-predator models with Holling-Ⅱ functional response and discusses the global stability of nonnegative equilibriums when the parameters satisfy some given conditions.
作者 李怡
机构地区 东南大学数学系
出处 《徐州师范大学学报(自然科学版)》 CAS 2008年第4期18-22,共5页 Journal of Xuzhou Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10771032)
关键词 Holling-Ⅱ型响应函数 捕食模型 非负平衡点 全局渐近稳定性 Holling- Ⅱfunctional response prey-predator model nonnegative equilibrium global stability
  • 相关文献

参考文献8

  • 1Bazykin A D. Nonlinear dynamics of interacting populations(series on nonlinear science)[M]. Singapore:World Scientific Press, 1998.
  • 2Turchin P,Batzli G O. Availabitity of food and the population dynamics of arvicoline rodents[J].Ecology, 2001,82 (6) :1521.
  • 3Wang Mingxin, Pang P Y H. Global asymptotic stability of positive steady states of a diffusive ratio-dependent preypredator model[J].Appl Math Lett,2008.
  • 4Hsu S B. Ordinary differential equations with applications[M]. Singapore: World Scientific Press, 2005.
  • 5Hsu S B, Hwang T W,Kuang Y. A ratio-dependent food chain model and its applications to biological Controi[J].Math Biosci, 2003,181 ( 1 ) : 55.
  • 6Pang P Y H,Wang Mingxin. Qualitative analysis of a ratio-dependent predator-prey system with diffusion[J].Proc Roy Soc Edinburgh Sect A, 2003,133(4) : 919.
  • 7Wang Mingxin. Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion[J].Phys D, 2004,196 ( 1 - 2) : 172.
  • 8郑重武,张凤琴.一类捕食者有病的捕食-被捕食的SIS模型[J].徐州师范大学学报(自然科学版),2008,26(2):132-134. 被引量:14

二级参考文献4

共引文献13

同被引文献22

  • 1王鲁欣,李波.一类带有交错扩散的捕食模型的定性分析[J].徐州师范大学学报(自然科学版),2009,27(1):33-37. 被引量:3
  • 2宋永利,韩茂安,魏俊杰.多时滞捕食-食饵系统正平衡点的稳定性及全局Hopf分支[J].数学年刊(A辑),2004,25(6):783-790. 被引量:27
  • 3蔡礼明,方琴华,宋新宇.一类具有阶段结构和时滞的捕食系统的持续生存和稳定性(英文)[J].应用数学,2006,19(3):484-491. 被引量:8
  • 4Gakkhar S, Naji R K. Chaos in seasonally perturbed ratio-dependent prey-predator system [J]. Chaos Solitons & Fractals, 2003, 15 (1): 107- 118.
  • 5Song Y, Wei J. Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system [J]. Journal of Mathematics Analysis and Applications, 2005, 301:1-21.
  • 6Hale J, Lunel S. Theory of functional differential equations [M]. New York: Springer, 1977.
  • 7Wu J H. Symmetric functional differential equations and neural networks with memory [J]. Transactions of the A rnerecan Mathematical Society, 1998, 350(12): 4799-4838.
  • 8Zhang J, Jin Z, Yan J, et al. Stability and Hopf bifurcation in a delayed competition system[J]. Nonlinear Analysis, 2009, 70(2): 658-670.
  • 9Wei J J, Yuan Y. Synchronized Hopf bifurcation analysis in a neural network model with delays [J]. Journal of Mathematical Analysis and Applications, 2005, 312(1): 205-229.
  • 10Song Y L, Peng Y H, Wei J J. Bifurcations for a predator-prey system with two delays [J]. Journal of Mathematical Analysis and Applications, 2008, 337(1): 466-479.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部