期刊文献+

基于Lipschitz指数的小波阈值去噪方法 被引量:4

Wavelet Threshold De-noising Method Based on Lipschitz Exponent
下载PDF
导出
摘要 对于非平稳信号,小波多尺度分解是一种有效的信号去噪工具。在D.L.Donoho的多分辨率小波阈值去噪方法的基础上,提出了基于Lipschitz指数的小波阈值去噪方法。仿真结果表明,采用基于Lipschitz指数的小波阈值去噪方法不仅有效抑制了由于硬阈值函数的不连续性而在信号奇异点附近产生的Pseudo-Gibbs现象,而且在更加彻底去噪的前提下很好地保留了信号的边缘信息。无论是在视觉效果上,还是在信噪比增益和最小均方误差意义上均优于传统的软硬阈值方法。 Wavelet multi-scale decomposition is an effective method to eliminate the noises for unstable signals. In virtue of the multi-resolution wavelet threshold de-noising method presented by D. L. Donoho, the wavelet threshold de-nosing method with the use of Lipschitz exponent was proposed. Simulation results indicate that this method can effectively suppress the Pseudo-Gibbs phenomena in the vicini- ties of the singular points of the signal due to the discontinuity of the hard threshold function. It also reserves the edge information of the signals under the condition of thorough elimination of noises. Numerical results also show that this method gives better MSE performance and SNR gains than both the traditional hard threshold and soft threshold methods.
作者 金彩虹
出处 《噪声与振动控制》 CSCD 北大核心 2008年第6期13-16,共4页 Noise and Vibration Control
关键词 派动与波 小波变换 小波阈值去噪 Lipschitz指数 均方误差 信噪比 nent mean square vibration and wave wavelet transform wavelet threshold de-nosing Lipschitz expoerror (MSE) signal to noise ratio (SNR)
  • 相关文献

参考文献6

  • 1Donoho D L. Denoising by Soft Thresholding [ J ]. IEEE Trans. on Inform. Theory, 1995,41 (3) :613 -627.
  • 2Chang S G, Bin Yu, Vetterli M. Adaptive Wavelet Thresholding for Image Denoising and Compression [ J ]. IEEE Trans. on Image Processing, 2000, 9 ( 9 ) : 1532 - 1546.
  • 3曲天书,戴逸松,王树勋.基于SURE无偏估计的自适应小波阈值去噪[J].电子学报,2002,30(2):266-268. 被引量:66
  • 4Hsung T C, Lun DP - K and Siu W - C. Denoising by singularity detection [ J ]. IEEE Trans. on Signal Proc. , 1999,47 ( 11 ) :3139 - 3144.
  • 5Mallat S, Hwang W L. Singularity detection and processing with wavelets [ J ]. IEEE Trans. on Inform. Theory, 1992,38(2) :617 -643.
  • 6Donoho D L, Johnstone I M. Ideal spatial adaptation bywavelet shrinkage [ J ]. Biometrika, 1994, 81 ( 3 ) : 425 -455.

二级参考文献3

共引文献65

同被引文献36

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部