期刊文献+

平移不变量小波阈值去噪法在齿轮振动信号处理中的应用 被引量:7

Application of Translation Invariant Wavelet Threshold Denoising Method in Vibration Signal Processing of Gears
下载PDF
导出
摘要 齿轮振动信号往往受到噪声干扰,用传统的小波阈值去噪法去噪时,由于信号中存在不连续点,会在不连续点处引起Pseudo-G ibbs现象。采用平移不变量小波阈值去噪法对信号进行去噪,首先对含噪声信号进行循环平移,然后对信号进行小波阈值去噪,最后对信号进行反平移后平均,得到去噪后的信号。应用这种方法对仿真信号和实验采集的含噪声齿轮故障信号进行去噪,并和小波阈值去噪效果进行对比,结果表明这种去噪方法有效抑制了Pseudo-G ibbs现象,并有更好的去噪效果。 Gear vibration signal is disturbed by noise very often. In the vicinity of discontinuities of signals, traditional wavelet threshold de-noising method may exhibit pseudo-Gibbs phenomenon. In this paper, a translation invariant wavelet threshold de-noising method was presented to eliminate the noises in the signal's. Firstly, the signal with noise was translated cyclically. Then the noises in the signal were eliminated with wavelet threshold de-noising. Finally, the signal was translated back and averaged. The simulation signals and gear fault signals collected in the experiment were processed by translation invariant wavelet threshold de-noising. And the denoising effect was contrasted with that of traditional wavelet threshold denoising method. Results show that this method can suppress pseudo-Gibbs phenomenon effectively.
出处 《噪声与振动控制》 CSCD 北大核心 2008年第6期17-19,27,共4页 Noise and Vibration Control
基金 国家自然科学基金资助项目(项目编号:50677017)
关键词 振动与波 平移不变量 阈值去噪 Pseudo—Gibbs现象 齿轮振动信号 vibration and ware translation invariant threshold de-noising pseudo-Gibbs phenomenon gear vibration signal
  • 相关文献

参考文献6

二级参考文献16

  • 1[1]Mallat S. Theory for multi-resolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674~693
  • 2[2]Mallat S, Hwang W L. Singularity detection and processing with wavelets. IEEE Transaction on Information Theory, 1992, 38(2): 617~643
  • 3[3]Donoho D L. Denoising by soft-thresholding. IEEE Transaction on Information Theory, 1995, 41 (3) : 613~627
  • 4[4]Donoho D L, Johnstone I. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 1994, 81(3): 425~455
  • 5[5]Donoho D L. Nonlinear wavelet methods for recovery of signals, desities and spectra from indirect and noisy data. Proceeding of Symp. in Applied Mathematics, 1993, 47: 173~205
  • 6[6]Coifman R R, Donoho D L. Translation-invariant de-noising. Wavelets and Statistics. New York: Springer Verlag, 1995. 125~150
  • 7[7]Lang M, Guo H, Odegard J E, et al. Nonlinear processing of a shift invariant DWT for noise reduction. Proceeding of SPIE Conference, Orlando, 1995.
  • 8DONOHO D L. Denoising by soh-thresholding[J].IEEE Transaction on Information, 1995 (3): 613 -627.
  • 9JIANG C H, YOU W, WANG L S . Analysis and study of noise elimination through wavelet in detection of acoustic emission. ICMLC 2003, 2003.315.
  • 10COIFMAN R R, DONOHO D L. Translation-invariant denoising, wavelet sand statistics. New York :Springer-Verlag, 1995 : 125 - 150.

共引文献58

同被引文献99

引证文献7

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部