期刊文献+

基于均方差值调节的多目标权重系数GA算法 被引量:1

Multi-Objective Weight Coefficient Genetic Algorithm Based on Averge Variance Value Adjustment
下载PDF
导出
摘要 提出一种改进的权重系数调节算法求解多目标Pareto最优解问题.该算法采用均方差值自适应权重调节法对各目标函数权值进行有效调节,从而提高了GA所得最终种群在多目标最优意义下具有分散性.最后通过实验优化一组测试函数来评价该算法的性能,结果表明:该算法具有很强的寻优能力,相比于其它同类算法可以更好地解决多目标优化问题. This paper proposes a improved weight coefficient adjustment algorithm to solve Multi- objective Pareto optimal solution problem, the algorithm uses the method of average variance value adapting weight coefficient to adjust the weight of every objective function, so that it enhances the dispersion of GA goal population in the sense of multi-objective optimization. Fin.ally a set of experiments has been implemented to evaluate the performance of this algorithm by optimizing a group of test function set. The results show that this algorithm has the powerful ability of searching optimal, and compared with other multi-objective optimization algorithms, the new algorithm can perform better in solving multi-objective optimization problems.
作者 余元辉
出处 《沈阳化工学院学报》 2008年第4期355-359,共5页 Journal of Shenyang Institute of Chemical Technolgy
基金 福建省集美大学科研基金资助项目(F05026 ZB2005002)
关键词 遗传算法(GA) 多目标优化 权重和 PARETO最优解 genetic algorithm(GA) multi-objective optimization weight sum Pareto optimal solution
  • 相关文献

参考文献7

  • 1SRINIVAS N,DEB K. Multi-objective Function Optimization Use Nondominated Genetic Algorithms [J ]. Evolutionary Computation, 1994, 2 ( 3 ) : 221 -248.
  • 2ZITZLER E, THIELE L. Multi-objective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto App Roach [J ]. IEEE Transactions on Evolutionary Computation, 1999, 3 ( 4 ) : 257 - 271.
  • 3KNOWLES J D,CORNE D W. App Roximating the Nondominated Front Using the Pareto Archived Evolution Strategy[J ]. Evolutionary Computation, 2000, 8(2) : 149- 172.
  • 4DEB K, AGRAWAL S, PRATAP A, et al. A Fast and Elitist Multi-objective Genetic Algorithms: NSGA Ⅱ [J]. IEEE Transactions on Evolutionary Computation,2002,6(2) : 182 - 197.
  • 5樊纪山,刘冠蓉,王鲁,时忠伟.一种改进快速稳定的多目标优化算法[J].计算机应用研究,2007,24(4):52-53. 被引量:6
  • 6邓松,元昌安,杨乐婵,饶元,廖剑平.基于改进型期望值选择的GA及程序实现[J].广西师范学院学报(自然科学版),2006,23(2):46-50. 被引量:1
  • 7GEN M, CHENG R. Multiobjective Optimization Using Genetic Algorithms [ J ]. Engineering Valuation and Cost Analysis, 1999,2:303 - 310.

二级参考文献16

  • 1罗润林,张小路.电阻率测深数据的遗传算法和最小二乘法反演[J].桂林工学院学报,2004,24(2):152-154. 被引量:6
  • 2Holland J H. Adaptation in Natural and Artificial Systems[M]. The University of Michigan Press, 1975.
  • 3D E Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning[J]. MA, Addison-Wesley, 1989.
  • 4玄光男,程润伟.Genetic algorithm and engineering optimization [M].北京:清华大学出版社,2004:76—83.
  • 5SRINIVAS N, LKALYANMOY D. Multl-objective optimization using the nondominated sorting in genetic algorithms [ J] . Evolutionary Computation, 1994,2 ( 3 ) :221 - 248.
  • 6ZITZLER E D. Combining convergence and diversity in evolutionary multi-objective optimization evolutionary computation[J]. Massachusetts Institute of Technology Evolutionary Compution, 2002,10(3) :208-346.
  • 7KENNEDY J, EBERHART R C. A discrete binary version of the particle swarm algorithm: proc. of Conf. on Systems, Man, and Cybernetics[ C ]. Piscataway: IEEE Service Center, 1997:4104-4109.
  • 8EBERHART R C,KENNEDY J. A new optimizer using particle swarm theory: proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan[C]. Piscataway: IEEE Service Center, 1995 : 39- 43.
  • 9GREGORIO T P, CARLOS A C. Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer[ C]//KALYANMOY D, et al. Genetic and evolutionary computation conference,part I:lecture Notes in Computer Science vol. 3102. Seattle : Springer-Verlag, 2004:237-255.
  • 10丁承民,张传生,刘贵忠.正交试验遗传算法及其在函数优化中的应用[J].系统工程与电子技术,1997,19(10):57-60. 被引量:15

共引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部