期刊文献+

一种基于网格的最近邻SVM新算法 被引量:5

A new NN-SVM algorithm based on gird
下载PDF
导出
摘要 支持向量机(SVM)算法往往由于分类面过分复杂或过学习而导致其泛化能力降低,现有的最近邻(NN-SVM)或K近邻(K-NN-SVM)方法解决了这类样本问题,但算法时间复杂度高,处理海量样本的能力有限。在NN-SVM算法的基础上引入了网格概念,提出了G-NN-SVM算法,该算法先对空间进行分块,然后在空间块内计算样本距离,找出最近邻,并结合分块序列最小优化算法(SMO)进行了算法实现。实验表明,该方法降低了计算复杂度,它在保持分类精度的同时,提高了训练和分类的速度,并具有较强的泛化能力,从而提高了原NN-SVM算法的海量数据处理能力。 The generalization ability of SVM algorithm is decreased due to the complicated elassified-hyperplane or overlearning. Current methods, such as NN-SVM and K-NN-SVM, can solve this problem caused by samples, but they also have their limitations, such as algorithm time complexity and poor ability for processing massive samples. Hence, the grid is introduced, and G-NN-SVM algorithm based on NN-SVM is presented. After space blocking, this algorithm calculates distance between samples in the blocked space, identifies the nearest neighbor, and realizes the algorithm by combining with chunking SMO algorithm. Experiments show that the new algorithm reduces the computational complexity, improves the speed of training and classification, and maintains the classification accuracy at the same time. It has strong generalization ability, and enhances the mass data processing capability of original NN-SVM.
出处 《重庆邮电大学学报(自然科学版)》 2008年第6期706-709,共4页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 "973"计划前期研究项目(2008CB317111) 国家自然科学基金项目(60873079) 重庆市自然科学基金项目(2008BB2241) 重庆市教委科学技术研究项目资助
关键词 支持向量机(SVM) 最近邻 网格 NN—SVM算法 support vector machine (SVM) nearest neighbor grid NN-SVM algorithm
  • 相关文献

参考文献5

二级参考文献21

  • 1Hearst M A, Dumais S T, Osman E, Platt J, Scholkopf B.Support Vector Machines. IEEE Intelligent Systems, 1998, 13(4) : 18-28.
  • 2Ke Hai-Xin,Zhang Xue-Gong. Editing support vector machines.In: Proceedings of International Joint Conference on Neural Networks, Washington, USA, 2001, 2:1464-1467.
  • 3Vapnik V N. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10 (5): 988-999.
  • 4Vapnik V N. Statistical Learning Theory. 2nd ed. New York:Springer-Verlag : 1999.
  • 5Klaus-Robert Mailer, Sebastian Mika, Gunnar Raetsch, Koji Tsuda, and Bernhard Schoelkopf. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12 (2): 181-201.
  • 6Burges C J C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
  • 7HANJ KAMBERM 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 8VAPNIKVN 张学工译.统计学习理论的本质[M].清华大学出版社,2000..
  • 9Vapnik V N. Estimation of Dependences Based on Empirical Data. Springer-Verlag, New York, 1982
  • 10Osuna E, Freund R, Girosi F. An Improved Training Algorithm for Support Vector Machines. In: Principe J, Cities L, Morgan N,Wilson E, eds. Neural Networks for Signal Processing VII - Proc of the 1997 IEEE Workshop. IEEE Press, New York, 1997, 276- 285

共引文献82

同被引文献61

引证文献5

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部