期刊文献+

一个新超混沌系统的自适应同步(英文) 被引量:2

Adaptive Synchronization of a New Hyperchaos
下载PDF
导出
摘要 对于一个新的四维超混沌系统,通过相平面分析和Lyapunov计算对其进行了简单的分析。基于Lyapunov稳定性理论和Babalat引理,设计出适当的控制器和相应的参数自适应律,最终实现了两个同样的参数完全未知的该超混沌系统的全局同步。数值模拟结果证明了该控制器设计的有效性。 For a novel four-dimensional hyperchaos, we analyzed its complex properties by phase portrait and computing Lyapunov exponent. Based on Lyapunov stability theorem and Babalat' s lemma the appropriate controller and parameter adaptive law were designed so as to synchronize the two identical hyper- chaotic systems with unknown parameters. Simulation results were proposed to demonstrate the effectiveness of the controller.
出处 《西南科技大学学报》 CAS 2008年第4期55-59,共5页 Journal of Southwest University of Science and Technology
基金 甘肃省自然科学科研基金重点资助项目(3ZS051-A25-030,3ZS-042-B25-049) 兰州交通大学科研基金(DXS-07-0028,DXS-07-0029)
关键词 超混沌 自适应同步 四维 Hyperchaos Adaptive synchronization Four-dimensional
  • 相关文献

参考文献2

二级参考文献35

  • 1Lorenz E N 1963 J. Atmos. Sci. 20 130.
  • 2Chua L, Komuro M and Matsumoto T 1986 IEEE Trans. Circuit Syst. I 33 1072.
  • 3Chen G R and Ueta T 1999 Int. J. Bifur. Chaos 9 1465.
  • 4Lu J H and Chen G R 2002 Int. J. Bifur. Chaos 12 659.
  • 5Lu J H, Chen G R, Cheng D Z and Celikovsky S 2002 Int. J. Bifur. Chaos. 12 2917.
  • 6Qi G Y, Chen G R, Du S Z, Chen Z Q and Yuan Z Z 2005 Physica A 352 295.
  • 7Qi G Y and Chen G R 2006 Phys. Lett. A 352 386.
  • 8Qi G Y, Du S Z, Chen G R, Chen Z Q and Yuan Z Z 2005 Chaos, Solitons and Fractals 23 1671.
  • 9Wang F Z, Qi G Y, Chen Z Q and Yuan Z Z 2007 Acta Phys. Sin. 56 3137 (in Chinese).
  • 10Wang F Z, Qi G Y, Chen Z Q, Zhang Y H and Yuan Z Z 2006 Acta Phys. Sin. 55 4005 (in Chinese).

共引文献51

同被引文献13

  • 1陈志盛,孙克辉,张泰山.Liu混沌系统的非线性反馈同步控制[J].物理学报,2005,54(6):2580-2583. 被引量:77
  • 2褚衍东,李险峰,张建刚,常迎香.一个新自治混沌系统的计算机仿真与电路模拟[J].四川大学学报(自然科学版),2007,44(3):596-602. 被引量:24
  • 3Perora, L. M., T. L. Carroll. Synchronization in Chaotic Systems[J]. Phys. Rev. Lea., 1990, 64:821-825.
  • 4HU J. , CHEN S. H. , CHEN L. Adaptive Control for Anti-synchronization of Chua - Chaotic System [ J 3. Phys. Lett. A, 2005, 339:455 - 460.
  • 5Mainieri, R. , J. Rehacek. Projective Synchronization in Three-dimension Chaotic Systems[ J]. Phys. Rev. Lett. , 1999, 82: 3042 - 3045.
  • 6WEN G. L. , XU D. Nonlinear Observer Control for Full-state Projective Synchronization in Chaotic Continuous-time Systems [J]. Chaos Solitons & Fractals, 2005, 26:71 -77.
  • 7JIANG G. P. , TANG W. , CHEN G. R. A Simple Global Synchronization Criterion for Coupled Chaotic Systems[ J] . Chaos, Solitons and Fractals, 2003, 15:925-935.
  • 8PECORA L M, CARROLL T L. Synchronization of chaot- ic systems[J]. Physical Review Letters, 1990, 64 (8) : 821 - 830.
  • 9LIU F, REN Y, SHAN X M. A linear feedback synchro- nization theorem for a class of chaotic system [ J ]. Chaos Solitons & Fractals, 2002, 13(4) : 725 -730.
  • 10MURALI K, LAKSHMANAN M. Chaos in NonlinearOscillators Controlling and Synchronization [ M ]. Singapore: World Scientific, 1996.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部