期刊文献+

一类非齐次弹性力学方程组整体熵解的存在性

EXISTENCE OF GLOBAL ENTROPY SOLUTIONS TO AN INHOMOGENEOUS ELASTODYNAMICS EQUATIONS
原文传递
导出
摘要 考虑非线性、非齐次弹性力学方程组在一定条件下整体熵解的存在性问题.由不变区域理论导出粘性解的L∞模的先验估计,利用粘性消失法结合补偿列紧理论给出粘性解的收敛性,即广义解的存在性. The existence of global entropy solution for nonlinear and inhomogeneous elastodynamics equations. A prior L∞ estimates of viscosity solution is derived with the help of the theory of invariant regions. By using the vanishing viscosity method together with compensation compactness theory, the convergence of viscosity solution is obtained.
作者 杨瑞芳
出处 《系统科学与数学》 CSCD 北大核心 2008年第12期1486-1492,共7页 Journal of Systems Science and Mathematical Sciences
基金 南京航空航天大学理学院青年基金(XK-0803)资助项目.
关键词 熵-熵流量 不变区域 补偿列紧理论 Young测度 Entropy-entropy flux, invariant regions, the theory of compensated compactness, young measure.
  • 相关文献

参考文献14

  • 1Chen Guiqiang, Li Banghe and Li Tianhong. Entropy solutions in L^∞ for the Euler equations in nonlinear elastodynamics and related equations. Arch. Ration. Mech. Anal., 2003, 170: 331-357.
  • 2Diperna R J. Convergence of approximate solutions to conservation laws. Arch. Ration. Mech. Anal., 1983, 82: 29-70.
  • 3Gripenberg G. Compensated compactness and one-dimensional edastodynamics. Ann. Scuola Norm. Sup. Pisa CI Sci., 1995, 22(4): 229-240.
  • 4Lin Peixiong. Young measures and an application of compensated compactness to one-dimensional nonlinear elastodynamics. Trans. Amer. Math. Soc., 1992, 329: 377-413.
  • 5Lu Yunguang. Convergence of the viscosity method for some nonlinear hyperbolic systems. Proc. Roy. Soc. Edinburgh Sect., 1994, A124: 341-352.
  • 6Lu Yunguang. Hyperbolic Conservation Laws and the Compensated Compactness Method. New York: Chapman and Hall, 2002.
  • 7Perthame B and Tzavaras A. Kinetic formulation for system of two conservation laws and elastodynamics. Arch. Ration. Mech. Anal., 2000, 155: 1-48.
  • 8Shear J W. Global existence and compactness in L^p for the quasi-linear wave equation. Comm. Partial Diff. Eqs., 1994, 19: 1829-1877.
  • 9Zhu Changjiang. Convergence of the viscosity solutions for the system of nonlinear elasticity. J. Math. Anal. Appl., 1997, 209: 585-604.
  • 10Dafermos C M. Estimates for conservation laws with little viscosity. SIAM J. Math. Analysis, 1986, 18: 409-421.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部