摘要
设R是任意含么交换环,2是R的可逆元.M(n,R)表示R上所有n×n级矩阵形成的代数,T(n,R)表示R上所有n×n级上三角矩阵形成的代数.决定了T(n,R)在M(n,R)中的扩代数,并具体刻画了这些扩代数的若当导子.
Let R be an arbitrary commutative ring with identity, and 2 be invertible in R. Let M(n, R) (resp., T(n, R)) be the R-algebra consisting of all n x n matrices (resp., upper triangular matrices) over R. In this paper, we first determine all the over-algebras of T(n, R) in M(n, R), then for any given over-algebra of T(n, R) in M(n, R), we give the explicit description on its Jordan derivations.
出处
《系统科学与数学》
CSCD
北大核心
2008年第12期1502-1508,共7页
Journal of Systems Science and Mathematical Sciences
关键词
交换环
扩代数
若当导子
Commutative rings, over-algebras, Jordan derivations