期刊文献+

含随机效应GCM中回归参数阵两步估计的计算及其无偏性 被引量:1

THE COMPUTING METHOD AND UNBIASED PROPERTY OF TWO-STAGE ESTIMATE IN THE GROWTH CURVE MODEL WITH RANDOM EFFECTS
原文传递
导出
摘要 首先给出了含随机效应增长曲线模型中回归参数阵两步估计的一个较为简单的计算方法;然后给出了回归参数阵的可估函数的两步估计具有无偏性的一个基本结论,并证明了两种常见两步估计均具有无偏性;最后给出了一个牙齿生长数据的实例模拟. Firstly, a simple computing method is given for the two-stage estimate of regression coefficient matrix in the Growth Curve Model with Random Effects. Then the unbiased property of the two-stage estimate was become an unbiased estimate is proved. Finally, an example of dental growth data is given.
出处 《系统科学与数学》 CSCD 北大核心 2008年第12期1545-1554,共10页 Journal of Systems Science and Mathematical Sciences
关键词 随机效应 回归参数阵 两步估计 无偏估计 Random effects, regression coefficient, two-stage estimate, unbiased estimate
  • 相关文献

参考文献10

  • 1Pottoff and Ray. A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika, 1964, 51: 313-326.
  • 2Schott and Saw. A multivariate one-way classification model with random effects. J. Multivariate Anal., 1984, 15: 1-12.
  • 3Amemiya and Fuller. Estimation for the multivariate errors-in-variables model with estimated error covariance matrix. Ann. Statist., 1984, 12: 497-509.
  • 4Anderson B M, Anderson T W and Olkin. Maximum likelihood estimators and likelihood ratio criteria in multivariate components of variance. Ann. Statist., 1986, 14: 405-417.
  • 5Hironori Fujisawa. Likelihood ratio criterion for mean structure in the growth curve model with random effects. J. Multivariate Anal., 1997, 60: 91-97.
  • 6Anderson T W and Amemiya. Testing dimensionality in the multivariate analysis of variance. Statist. Probab. Lett., 1991, 12: 445-463.
  • 7Fujisawa. Likelihood Ratio Test for Necessity of Random Coefficient Model. Statistical research group, Hiroshima, Hiroshima University, 1995, 95-23.
  • 8Kuriki. Likelihood ratio test for covariance structure in random effects model. J. Multivariate Anal., 19931 46: 175-197.
  • 9Yokoyama and Fujikoshi. Test for random-effects covariance structures in the growth curve model covariates. Hiroshima Math. J., 1992, 22: 195-202.
  • 10Pan Jianxin and Fang Kaitai. Growth Curve Model and Statistical Diagnostics. New York: Springer-Verlag, 2002.

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部