期刊文献+

转子振动信号的二阶非平稳源盲分离 被引量:2

Blind separation of rotor vibration signals by second order non-steady arithmetic
下载PDF
导出
摘要 复杂的转子系统的多振动混叠信号分离是振动信号处理领域的一个难题。在介绍盲源分离基本原理的基础上,首次选用了二阶非平稳源盲分离算法对带有较强噪声的实际转子系统的振动信号进行盲分离,满意地分离出了各个振动源信号。采用SONS算法得到的振动源频谱分析清晰地反映出了各个振动源的频谱特性,且较好地抑制了噪声的影响。研究中提出的测量方法,为实际复杂结构的振动源盲识别提供了支持。 The separation of multi mixed vibration signal on complicated rotor system is a difficult problem in vibration signal process. After the basic principles of blind source separation is introduced, the second order non-steady arithmetic is first chosen for vibration signals separation on real rotor system. Usually this vibration signals have strong noise. The vibration source is separated successfully by the method. The spectrums of separated vibration sources obtained by SONS arithmetic can be clearly reflected in frequency domain. The noise is kept down better in the frequency domain. The measurment methods provides the support for vibration source blind identification of complex structure.
出处 《推进技术》 EI CAS CSCD 北大核心 2008年第6期747-752,共6页 Journal of Propulsion Technology
基金 国家自然科学基金(50675099) 江苏省自然科学基金(BK2007197)
关键词 转子 振动信号 盲源分离^+ 二阶非平稳源^+ Rotor Vibration signal Blind source separation ^+ Second order non-steady source ^+
  • 相关文献

参考文献12

  • 1Loutridis S J. Damage detection in gear systems using empirical mode decomposition [ J]. Engineering Structures,2004, (26) :1833 - 1841.
  • 2Chu F, Tang Y. Stability and nonlinear responses of a rotor-bearing system with pedestal looseness [ J]. Journal of Sound and Vibration, 2001, 241 (5): 879-893.
  • 3李舜酩,杨涛.基于峭度的转子振动信号盲分离[J].应用力学学报,2007,24(4):560-565. 被引量:12
  • 4李舜酩.转子振动故障信号的盲分离[J].航空动力学报,2005,20(5):751-756. 被引量:30
  • 5Servere C, Fabry P. Blind source separation of noisy harmonic signals for rotating machine diagnosis [ J]. Journal of Sound and Vibration, 2004, 272: 317- 339.
  • 6S M Li,Z C Zheng. The probability density fanction method for blind source separation and the use in adaptive identification for weak vibration signal on automobile [ J ]. Advances in Vibration Engineering, 2007,6( 1 ) :43 - 52.
  • 7Gelle G, Colas M. Blind source separation: a tool for rotating machine monitoring by vibrations analysis [ J ]. Journal of Sound and Vibration, 2001,248 ( 5 ) : 865 - 885.
  • 8宋友,柳重堪,李其汉.基于三阶累积量的转子振动信号降噪方法研究[J].航空动力学报,2002,17(3):363-366. 被引量:5
  • 9Aapo Hyvarinen. Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood [J]. Neurocomputing, 1998(22):49-67.
  • 10Cichocki A, Douglas S C, Amari S. Robust techniques for independent component analysis (ICA) with noisy data[J]. Neurocomputing, 1998(22) :113 -129.

二级参考文献33

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2李舜酩,高德平.裂纹转子非线性振动特征的谐波小波与分形识别[J].航空动力学报,2004,19(5):581-586. 被引量:3
  • 3李舜酩.机械振动信号盲源分离的时域方法[J].应用力学学报,2005,22(4):579-584. 被引量:19
  • 4汪军,何振亚.瞬时混叠信号盲分离[J].电子学报,1997,25(4):1-5. 被引量:11
  • 5刘献栋.旋转机械转静件碰摩故障及其诊断技术的研究.北京航空航天大学博士论文[M].北京:-,1999..
  • 6[2]Cardoso J F.Source separation using higher order moments[C]// Proc of ICASSP.Glasgow,UK,1989:2109-2112.
  • 7[4]Comon P.Independent component analysis,A new concept[J].Signal Processing,1994,36(3):287-314.
  • 8[6]Cardoso J F,Laheld B H.Equivariant adaptive source separa-tion[J].IEEE Trans on Signal Processing,1996,44(12):3017-3030.
  • 9[8]Hyvarinen A.Fast and robust fixed-point algorithm for inde-pendent component analysis[J].IEEE Trans on Neural Net-works.1999,10(3):626-634.
  • 10Jutten C,Herault J.Blind Separation of Sources,Part I:An Adaptive Algorithm Based on Neuromimetic Architecture[J].Signal Processing,1991,24:1~10.

共引文献50

同被引文献14

  • 1李舜酩,杨涛.基于峭度的转子振动信号盲分离[J].应用力学学报,2007,24(4):560-565. 被引量:12
  • 2李舜酩.转子振动故障信号的盲分离[J].航空动力学报,2005,20(5):751-756. 被引量:30
  • 3张小兵,马建仓,陈翠华,刘恒.基于最大信噪比的盲源分离算法[J].计算机仿真,2006,23(10):72-75. 被引量:27
  • 4Han S H,Kim H.Extraction of rotating machine sources for fault diagnostics using independent component analysis[C]//.Instrumentation and Measurement Technology Conference.Ottawa:2005.
  • 5Nabil C,Yannick D.Self-adaptive separation of convolutively mixed signals with a recursive structure.Part 1:Stability analysis and optimization of asymptotic behavior[J].Signal Processing,1999,73(3):225-254.
  • 6Zhang Z L.Morphologically constrained ICA for extracting weak temporally correlated signals[J].Neurocomputing,2008,71:1669-1679.
  • 7Kokkinakis K,Nandi A K.Generalized gamma density-based score functions for fast and flexible ICA[J].Signal Processing,2007,87(5):1156-1162.
  • 8Lu W,Rajapakse J C.Approach and applications of constrained ICA[J].IEEE Trans.Neural Nets,2005,16:203-212.
  • 9Cao X R,Liu R W.A general approach to blind source separation[J].IEEE Trans.Signal Processing,1996,44:462-571.
  • 10李舜酩,雷衍斌.基于负熵的转子混叠振动信号盲识别[J].中国机械工程,2009,10(4):437-441. 被引量:6

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部