摘要
本文阐述引入特征点集误差分布的最小均方(LMS)运动估计问题.最优运动估计本质上是6自由度的非线性问题,本文提出推广的质心重合定理和运动参数分解定理,将其简化成3自由度的纯旋转问题.我们给出最优运动参数估计的线性算法,兼有运动估计的最优性质和能够实时实现的优点;同时给出一个迭代算法,其性能也是最优的,并且收敛性能更好.
This paper addresses the problem of LMS motion estimation, in the presence of feature point uncertainties. Optimal motion estimation is substantially a nonlinear problem with 6 depees of freedom. In this paper a modified centroid coincidence theorem and a motion parameter decomposition theerem are introduced,which degenerate it into a pure rotation problem with only 3 degrees of freedom. We propose a linear algorithm as well as an iterative algorithm, both providing optimal estimations. The linear one can be implemented in realtime,however the iterative one has better convergence abilities.
出处
《电子学报》
EI
CAS
CSCD
北大核心
1998年第1期15-19,33,共6页
Acta Electronica Sinica
关键词
计算机
视觉最优运动
估计
线性算法
迭代算法
Computer vision, Optimal motion estimation, Linear algorithm, Iterative algorithm