期刊文献+

基于AFM刻蚀的金属氧化物纳米结构构筑 被引量:1

原文传递
导出
摘要 利用原子力显微镜(AFM)接触模式机械刻蚀的方法,在双层金属Pt/Cu电极表面进行纳米结构的构筑,通过分析不同加工参数(针尖上施加的载荷大小,扫描速度,循环次数)对加工结构尺寸的影响,能得到结构尺寸任意控制的纳米图案.通过在空气中自然氧化和选择合适的参数,得到了铂-氧化铜-铂的纳米结构.用导电模式AFM和摩擦力图像对该结构进行了原位检验,发现在加工区域内出现了明显的半导体特征,对应的摩擦力图像同样直观显示出这种结构是由两种不同材料构成.结果表明采用这种特殊的AFM刻蚀方式,可作为加工新型金属氧化物半导体纳米电子器件的重要手段.
出处 《中国科学(G辑)》 CSCD 2008年第9期1228-1235,共8页
基金 国家自然科学基金(批准号:90306010) 教育部新世纪优秀人才计划(编号:NCET-04-0653) 国家重点基础研究计划(编号:2007CB616911) 河南省科技厅基础与前沿技术研究项目(编号:072300420100)资助
  • 相关文献

参考文献10

  • 1Tseng A A, Notargiacomo A, Chen T P. Nanofabrication by scanning probe microscope lithography: A review. J Vac Sci Tech B, 2005, 23(3): 877-894
  • 2何光宏,杨学恒.基于扫描探针显微镜的纳米加工技术研究进展[J].微电子学,2005,35(2):169-173. 被引量:4
  • 3朱吉牧,章海军,张冬仙.AFM纳米加工系统设计[J].光学仪器,2005,27(2):76-79. 被引量:2
  • 4Magno R, Bennett B R. Nanostructure patterns written in Ⅲ - Ⅴ semiconductors by an atomic force microscope. Appl Phys Lett, 1997, 70(14): 1855-1857
  • 5Muller M, Fiedler T, Groger R, et al. Controlled structuring of mica surfaces with the tip of an atomic force microscope by mechanically induced local etching. Surf Interface Anal, 2004, 36:189-192
  • 6Fonseca Filho H D, Mauricio M H P, Ponciano C R, et al. Metal layer mask patterning by force microscopy lithography. Mater Sci Eng B, 2004, 112:194-199
  • 7Gnecco E, Bennewitz R, Meyer E. Abrasive wear on the atomic scale. Phys Rev Lett, 2002, 88(21): 215501
  • 8Song J Q, Liu Z F, Li C Z, et al. SPM-based nanofabrication using asynchronization technique. Appl Phys A, 1998, 66:S715-S717
  • 9陈海峰,宋家庆,李春增,蔡生民,刘忠范.利用原子力显微镜在Au-Pd合金膜上制备纳米结构[J].科学通报,1998,43(18):1950-1953. 被引量:7
  • 10Schumacher H W, Keyser U F, Zeitler U. Controlled mechanical AFM machining of two-dimensional electron systems: Fabrication of a single-electron transistor. Physica E, 2000, 6(4): 860-863

二级参考文献35

  • 1杨学恒,陈红兵,费德国,谢超,靳平,杨惠.一种高精度原子力显微镜的设计及应用[J].中国机械工程,2004,15(21):1909-1911. 被引量:13
  • 2王忠怀,戴长春,孙红,白春礼.石墨表面纳米级直接刻蚀的研究[J].科学通报,1993,38(5):433-435. 被引量:5
  • 3Song Jiaqing,Appl Phys A,1998年,66卷,715页
  • 4Xu S,Langumuir,1997年,13卷,2期,127页
  • 5Song Jiaqing,Mol Cryst Liq Cryst,1997年,294卷,51页
  • 6Piner R D, Zhu J, Xu F, et al. "Dip-Pen" nanolithography [J]. Science, 1999, 283 (29): 661-663.
  • 7Binning G, Rohrer H. Surface studies by scanning tunneling microscope [J]. Phys Rev Lett, 1982, 49(1): 57-61.
  • 8Binning G, Quate C F. Atomic force microscope [J]. Phys Rev Lett, 1986, 56(9): 930-934.
  • 9Radmacher M, Hillner P. E. Hansma P. K. Scanning Nearfield optical microscope using microfabricated probes [J]. Review of Scientific Instruments, 1994, 65(8): 2737-2739.
  • 10Hobbs P. Magnetic force microscope [J]. Appl Phys Lett, 1989, 55(22): 2357-2359.

共引文献10

同被引文献29

  • 1Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films.Science,2004,306:666–669.
  • 2Geim A K,Novoselov K S.The rise of graphene.Nat Mater,2007,6:183–191.
  • 3Li X L, Wang X R, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319:1229-1232.
  • 4Wang X R,Ouyang Y J,Li X L,et al.Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors.Phys Rev Lett,2008,100:206803.
  • 5Lin Y M,Dimitrakopoulos C,Jenkins K A,et al.100-GHz transistors from wafer-scale epitaxial graphene.Science,2010,327:662.
  • 6Grosse K L,Bae M H,Lian F,et al.Nanoscale Joule heating,Peltier cooling and current crowding at graphene-metal contacts.Nat Tech,2011,6:287–290.
  • 7Schedin F,Geim A K,Morozov S V,et al.Detection of individual gas molecules adsorbed on graphene.Nat Mater,2007,6:652–655.
  • 8Merchant C A,Healy K,Wanunu M,et al.DNA Translocation through Graphene Nanopores.Nano Lett,2010,10:3163–3167.
  • 9Garaj S,Hubbard W,Reina A,et al.Graphene as a subnanometre trans-electrode membrane.Nature,2010,467:190–193.
  • 10Wang X,Zhi L J,Müllen K.Transparent,conductive graphene electrodes for dye-sensitized solar cells.Nano Lett,2008,8:323–327.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部