期刊文献+

关于Heisenberg流形Weyl律的余项(Ⅱ)

原文传递
导出
摘要 研究(2l+1)维无理Heisenberg流形上Weyl律余项的平方积分均值,并得到了渐近公式.
作者 翟文广
出处 《中国科学(A辑)》 CSCD 北大核心 2008年第10期1135-1152,共18页 Science in China(Series A)
基金 国家自然科学基金(批准号:10771127)资助项目
  • 相关文献

参考文献29

  • 1Hormander L. The spectral function of an elliptic operator. Acta Math, 121:193-218 (1968)
  • 2Bentkus V, Gotze F. Lattice point problems and distribution of values of quadratic forms. Ann Math, 50(2): 977-1027 (1999)
  • 3Berard P H. On the wave equation on a compact Riemannian manifold without conjugate points. Math Z, 155(3): 249-276 (1977)
  • 4Bleher L. On the distribution of the number of lattice points inside a family of convex ovals. Duke Math J, 67(3): 461-481 (1992)
  • 5Chung D, Petridis Y N, Toth J, The remainder in Weyl's law for Heisenberg manifolds Ⅱ. Bonner Mathematische Schriften, Nr 360, Bonn, 2003, 16
  • 6Fricker F. Einfuhrung in die Gitterpunketlehre, [Introduction to lattice point theory] Lehrbucher und Monographien aus dem Gebiete der Exakten Wissenschaften(LMW). Mathematische Reihe[Textbooks and Monographs in the Exact Sciences]73. Basel-Boston-Mas: Birkhauser Verlag, 1982
  • 7Gotze F. Lattice point problems and values of quadratic forms. Invent Math, 157:195-226 (2004)
  • 8Huxley M N. Exponential sums and lattice points Ⅲ. Proc London Math Soc, 87(3): 591-609 (2003)
  • 9Ivrii V Y. Precise Spectral Asymptotics for Elliptic Operators Acting in Fibrings over Manifolds with Boundary. Lecture Notes in Mathematics, Vol 1100, New York: Springer, 1984
  • 10Khosravi M, Petridis Y. The remainder in Weyl's law for n-dimensional Heisenberg manifolds. Proc Amer Math Soc, 133:3561-3571 (2005)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部