摘要
利用多辛方法研究了两带Ⅱ类超导体混合态的电磁特性.针对描述两带Ⅱ类超导体混合态的依赖于时间的Ginzburg-Landau方程,首先推导出了其满足多个守恒律(多辛守恒律、局部能量守恒律和局部动量守恒律)的一阶多辛偏微分方程组形式;随后构造了其18点多辛隐式格式用以模拟Ginzburg-Landau方程;最后,基于模拟结果,进一步得出了一假想两带Ⅱ类超导体的伏安特性及其在不同外界磁场下的电阻随温度变化关系曲线.算例结果表明两带Ⅱ类超导体混合态的最为突出的特征是:当外加磁场逐渐增强时,超导体的临界温度急剧下降,同时电阻率ρ迅速上升.同时,模拟结果显示出了多辛方法的两大优点:极高的数值精度和良好的长时间数值稳定性.
基金
国家自然科学基金(批准号:10572119,10772147和10632030)
高校博士点基金(编号:20070699028)
陕西省自然科学基金(编号:2006A07)
西北工业大学基础研究基金
大连理工大学工业装备结构分析国家重点实验室开放基金资助项目