期刊文献+

肾移植受者他克莫司剂量/浓度个体差异影响因素及其变化规律 被引量:18

Factors responsible for inter-individual variations in dosage/concentration of tacrolimus in renal transplant recipients
下载PDF
导出
摘要 目的探讨肾移植受者他克莫司剂量/浓度个体差异影响因素及其变化规律。方法观察118例肾移植术后早期(3、7、14、30d)、103例术后3月、75例术后6月、119例稳定期(≥1年)口服他克莫司+霉酚酸酯+泼尼松三联免疫抑制抗排斥的受者,记录性别、年龄、身高、体质量、他克莫司剂量、激素剂量、腹泻、血脂、肝功、肾功、白蛋白、红细胞比容,测定每个受者CYP3A5和MDR13435、2677、1236位点基因多态性及不同时期他克莫司药物浓度。然后以他克莫司浓度/剂量×体表面积为因变量分别进行多元线性回归分析。结果肾移植术后早期多元线性回归模型拟合度偏低,术后3月明显增高,术后6月进一步增高并逐渐趋于稳定;影响他克莫司剂量/浓度的因素在术后早期较多且变化剧烈,术后3月以后逐渐趋于稳定。从药物基因组学角度来看,影响他克莫司剂量/浓度的主要因素是MDR13435、MDR12677、MDR11236且术后早期变化剧烈,CYP3A5作用相对较弱且仅在稳定期入选,稳定期影响他克莫司代谢的主要因素是MDR13435。除药物基因组学因素外,年龄、肝功值、白蛋白和红细胞比容与他克莫司浓度/剂量×体表面积呈正相关,是个体差异的重要原因。结论肾移植术后他克莫司剂量/浓度影响因素的变化规律与肾移植临床特点相吻合,不同时期他克莫司剂量/浓度个体差异的影响因素不同。药物基因组学是影响他克莫司剂量/浓度个体差异的重要因素,临床用药应尽量避免对他克莫司代谢干扰大的药物。年龄、肝功、白蛋白、红细胞比容和激素剂量也是他克莫司剂量/浓度个体差异的重要原因。 Objective To identify the factors responsible for the inter-individual variations in the dosage/concentration of tacrolimus in renal transplant recipients. Methods This study involved renal transplant recipients receiving immunosuppressive therapy with the tacrolimus, mycophenolate and prednisone regimen after the operation. The gender, age, height, body weight, tacrolimus dosage, hormone dosage, diarrhea, blood lipids, liver function, renal function, albumin, and hematocrit of the patients were recorded at different time points, namely in early stage (3, 7, 14, and 30 days postoperatively, 118 cases), at 3 months (103 cases), 6 months (75 cases) and over one year (119 cases) after the operation. The concentrations oftacrolimus and gene polymorphisms at CYP3A5, MDR1 3435, MDR1 2677 and MDR1 1236 were also determined in these patients. Multiple linear regression was used for analysis of these factors with tacrolimus concentration/dosage*body surface area as the independent variable. Results Patients in early stage following renal transplantation showed rather poor fitting of the stepwise regression model, which increased obviously 3 months after the operation and further increased till reaching a stable level at 6 months. Multiple factors were found to affect tacrolimus concentration/dosage in the early postoperative stage, during which period these factors underwent drastic variations and became stable 3 months later. In terms of pharmacogenomics, the major factors affecting tacrolimus concentration/dosage included MDR1 3435, MDR1 2677 and MDR1 1236 polymorphisms, which vastly varied between the patients early after the operation. Of these polymorphic sites, CYP3A5 produced only minor effects on tacrolimus concentration/dosage, and was not included as an active factor until the stable phase (over 1 year) following the transplantation; MDR1 3435 was found to be the predominant factor affecting tacrolimus metabolism in the stable phase. Age, liver function, albumin and hematocrit were found to be positively correlated to the independent variable tacrolimus concentration/dosage*body surface area, and identified as important factors responsible for the intra-individual variation of tacrolimus dosage/concentration. Conclusion The variations in the factors affecting tacrolimus dosage/concentration after renal transplantation are consistent with the clinical features of the patients, and these factors vary with the postoperative stages. Pharmacogenomic factors produce the most conspicuous effect on tacrolimus dosage/concentration, and agents that may interfere with tacrolimus metabolism should be avoided after the operation. Age, liver function, albumin and hematocrit are also important factors responsible for the variation of tacrolimus dosage/concentration.
出处 《南方医科大学学报》 CAS CSCD 北大核心 2008年第12期2161-2164,共4页 Journal of Southern Medical University
基金 广东省医学科研基金(A2006387)
关键词 他克莫司 血药浓度 细胞色素P450 3A5 多药耐药基因1 基因多态性 tacrolimus concentration CYP3A5 MDR1 gene polymorphism
  • 相关文献

参考文献13

  • 1Ferraresso M, Tirelli A, Ghio L, et al. Influence of the CYP3A5 genotype on tacrolimus pharmacokinetics and pharmacodynamics in young kidney transplant recipients [J]. Pediatr Transplant, 2007, 11 (3): 296-300.
  • 2Renders L, Frisman M, Ufer M, et al. CYP3A5 genotype markedly influences the pharmaeokinetics of tacrolimus and sirolimus in kidney transplant recipients [J]. Clin Pharmacol Ther, 2007, 81(2): 228-34.
  • 3Roy JN, Barama A, Poirier C, et al. Cyp3A4, Cyp3AS, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients [J]. Pharmacogenet Genomics, 2006, 16(9): 659-65.
  • 4Macphee AM, Fredericks S, Tai T, et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and p-glycoprotein correlate with dose requirement [J].Transplantation, 2002, 74(11): 1486-9.
  • 5张鑫,刘志红,郑敬民,陈朝红,唐政,陈劲松,黎磊石.细胞色素P450 3A5和多药耐药基因1基因多态性在肾移植患者他克莫司血药浓度监测中的应用[J].肾脏病与透析肾移植杂志,2004,13(4):313-317. 被引量:21
  • 6Hsieh KP, Lin YY, Cheng CL, et al. Novelmutations of CYP3A4 in Chinese [J]. Drug Metab Dispos, 2001, 29(3): 268-73.
  • 7胡永芳,周宏灏.CYP3A4,CYP3A5和MDR1基因多态性对环孢素处置的影响[J].中国药理学通报,2005,21(3):257-261. 被引量:34
  • 8Venkataramanan R, Jain A, Warty VS, et al. Phannacokinetics of FK 506 in transplant patients [J]. Transplant Proc, 1991, 23 (6): 2736-40.
  • 9Beysens AJ, Wijene RM, Beurnan GH,et al. FK 506: monitoring in plasma or whole blood? [J]. Transplant Proc, 1991, 23(6): 2745-7.
  • 10Mekki Q, Lee C, Aweeka F, et al. Pharmacokinetics of taerolimus (FK 506) in kidney transplant patients [J]. Clin Pharmacol Ther, 1993, 53(3): 238.

二级参考文献48

  • 1Paulussen A, Lavrijsen K, Bohets H, et al. Two linked mutations in tran scriptional regulatory elements of the CYP3A5 gene constitute the major genetic determinant of polymorphic activity in humans. Pharmacogenetics,2000,10(5) :415
  • 2Lee SJ, Usmani K, Chanas B, et al. Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups. Pharmacogenetics, 2003,13: 461
  • 3Thiebaut F, Tsuruo T, Hamada H, et al. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues.Proc Natl Acad Sci U S A, 1987,84:7735
  • 4Hebert MF. Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery. Adv Drug Deliv Rev, 1997,27(2-3) :201
  • 5Zhang Y, Benet LZ. The gut as a barrier to drug absorption: Combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet,2001,40:159
  • 6Spencer CM, Goa KL, Gillis JC. Tacrolimus. An update of its pharmacology and clinical efficacy in the management of organ transplantation.Drugs, 1997,54:925
  • 7Zheng H, Webber S, Zeevi A, et al. Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms.Am J Transplant, 2003,3 (4): 477
  • 8Hesselink DA, van Schaik RH, van der Heiden IP, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyelosporine and tacrolimus. Clin Pharmacol Ther,2003,74(3) :245
  • 9Thervet E, Anglicheau D, King B, et al. Impact of cytochrome p450 3A5genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation,2003,76(8) :1233
  • 10Zheng H, Zeevi A, Schuetz E, et al. Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism.J Clin Pharmacol, 2004,44(2): 135

共引文献50

同被引文献170

引证文献18

二级引证文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部