摘要
利用元学习技术提出了一种分布式挖掘频繁闭合模式算法;为适应不同的分布式环境,还给出了该算法的一个变种;最后通过实验讨论了不同分布式下选取算法的策略。算法具有挖掘效率高、通信量少、可靠性高的特点,适合分布式挖掘。
This paper presented a distributed algorithm for mining frequent closed patterns using recta-learning. In order to accommodate the different distributed environment, also presented another similar algorithm. In the end, discussed the strategy for choosing the right distributed algorithm by experiment. This algorithm is more efficient and has less communicated and high reliability, applicable to distributed mining well.
出处
《计算机应用研究》
CSCD
北大核心
2009年第1期41-43,46,共4页
Application Research of Computers
基金
国家自然科学基金资助项目(70671094)
国家社会科学基金资助项目(05BTJ019)
浙江社科规划课题(06CGGL29YBB)
浙江科技计划资助项目(2007C24004)
国家博士学科点专项科研基金资助项目(20050353003)
关键词
数据挖掘
频繁闭合模式
分布式挖掘
元学习
data mining
frequent closed patterns
distributed mining
meta-learning