期刊文献+

基于标准结构熵的PPI网络可靠性研究 被引量:3

Research on robustness of PPI networks based on normalized entropy
下载PDF
导出
摘要 由蛋白质相互作用构成的PPI网络的拓扑特性分析是后基因组时代最重要的研究课题之一。应用标准网络结构熵对DIP数据库中七个物种的八个PPI网络的异质性和可靠性进行分析与研究。分析结果表明,这些PPI网络具有典型的无尺度特性,对随机移除不超过10%的顶点都具有很好的鲁棒性,但对有选择地移除2%的高度顶点就开始表现出极弱的抗攻击性。 Analysis of the topology characters of PPI network composed of protein-protein interactions is one of the most important issues in the post-genomic era. This paper analyzed the heterogeneity and robustness of 8 PPI networks of 7 species in DIP database by using ormalized entropy. Analysis shows that these PPI networks are all scale-free, which are robust against the random removal of not more than 10% nodes, but are vulnerable to the removal of 2% nodes of high degree.
出处 《计算机应用研究》 CSCD 北大核心 2009年第1期97-98,共2页 Application Research of Computers
基金 国家自然科学基金重点资助项目(60433020) 新世纪优秀人才支持计划资助项目(NCET-05-0683) 长江学者和创新团队发展计划资助项目(IRT0661)
关键词 系统生物学 蛋白质相互作用网络 鲁棒性 脆弱性 system biology protein-protein interaction network robustness lethality entropy
  • 相关文献

参考文献8

  • 1JEONG H, MASON S, BARABASI A, et al. Lethality and centrality in protein networks[J]. Nature, 2001,411 (6833) :41-42.
  • 2YOOK S H, OLTVAI Z N, BARABASI A N. Functional and topological characterization of protein interaction networks [ J ]. Proteomics, 2004,4(4) :928-942.
  • 3PRZULI N, WIGLE DA, JURISICA I. Functional topology in a network of protein interactions [ J ]. Bioinformatics, 2004,20 (3) :340-8.
  • 4WUCHTY S, ALMAAS E. Peeling the yeast protein network [ J ]. Proteomics, 2005,5(2) :444-449.
  • 5GOH K, KAHNG B, KIM D. Graph theoretic analysis of protein interaction networks of eukaryotes[J]. Physica A, 2005,357:501-512.
  • 6谭跃进,吴俊.网络结构熵及其在非标度网络中的应用[J].系统工程理论与实践,2004,24(6):1-3. 被引量:127
  • 7吴俊,谭跃进,邓宏钟,朱大智.Normalized entropy of rank distribution: a novel measure of heterogeneity of complex networks[J].Chinese Physics B,2007,16(6):1576-1580. 被引量:3
  • 8[ EB/OL]. http ://www. ed. gov(2002 - 10 -08).

二级参考文献24

  • 1[1]Wasserman S, Faust K. Social Network Analysis: Methods and Applications [M]. Cambridge: Cambridge University Press,1994.
  • 2[2]Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology[J]. Comput Commun Rev, 1999, 29: 251-262.
  • 3[3]Lawrence S, Giles C L. Searching the world wide web[J]. Science, 1998, 280: 98-100.
  • 4[4]Albert R, Jeong H, A.L.Baraba'si. Diameter of the world-wide web[J]. Nature ,1999, 401: 130-131.
  • 5[5]Barabasi A L, Reka Albert, Hawoong Jeong. Mean-field theory for scale-free random networks[J]. Physica A, 1999, 272: 173-187.
  • 6[6]Barabasi A L, Reka Albert, Hawoong Jeong. Scale-free characteristics of random networks: the topology of the world-wide web[J]. Physica A, 2000, 281:69-77.
  • 7[9]Serrano M A, Boguna M. Topology of the world trade web[J]. Physical Review E, 2003, 68: 015101-4.
  • 8阎长俊,王启家,初长庚.系统和熵[J].沈阳建筑工程学院学报,1997,13(2):213-216. 被引量:4
  • 9Li Y, Liu Y, Shan X M, Ren Y, Jiao J and Qiu B 2005 Chin. Phys. 14 2153
  • 10Hu K and Tang Y 2006 Chin. Phys. 15 2782

共引文献134

同被引文献96

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部