期刊文献+

李代数■上的非交换Poisson代数结构 被引量:1

Non-Commutative Poisson Algebra Structures on Lie Algebra ■
原文传递
导出
摘要 非交换的Poisson代数同时具有(未必交换的)结合代数和李代数两种代数结构,且结合代数和李代数之间满足所谓的Leibniz法则.确定了李代数■上所有的Poisson代数结构. Non-commutative Poisson algebras are the algebras having both an asso- ciative algebra structure and a Lie algebra structure together with the Leibniz law. In this paper the non-commutative Poisson algebra structures on slN(Lq) are determined.
作者 佟洁 靳全勤
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2009年第1期17-32,共16页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10671142) 上海高校选拔培养优秀青年教师科研专项基金资助项目(Z-2008-45) 教育委员会科研创新项目
关键词 广义仿射李代数 POISSON代数 Leibniz法则 extended atone Lie algebra Poisson algebra Leibniz law
  • 相关文献

参考文献15

  • 1Gerstenhaber M., On the cohomology structure of an associative ring, Ann. Math., 1963, 78: 59-103.
  • 2Gerstenhaber M., On the deformation of rings and algebras, Ann. Math., 1964, 79:267-288.
  • 3Gerstenhaber M., On the deformation of rings and algebras Ⅱ, Ann. Math., 1966, 84:1-19.
  • 4Gerstenhaber M., On the deformation of rings and algebras Ⅲ, Ann. Math., 1968, 88: 1-34.
  • 5Cerstenhaber M., On the deformation of rings and algebras Ⅳ, Ann. Math., 1974, 99: 257-276.
  • 6Gerstenhaber M., Schack S. D., Algebraic Cohomology and Deformation Theory, in M. Hazewinkel and M. Gerstenhaber, Eds, Deformation Theory of Algebras and Structures and Applications (Kluwer Academic Publishers, Dordrecht, 1988), 11-264.
  • 7HCegh-Krohn R., Torresani B., Classification and construction of quasi-simple Lie algebras, J. Funct. Anal., 1990, 89: 106-136.
  • 8Allison B., Azam S., Berman S., Gao Y., Pianzola A., Extended affine Lie algebras and their root systems, Memoir. Am. Math. Soc., 1997, 603(126): 1-120.
  • 9Kubo F., Finite-dimensional non-commutative Poisson algebras, Journal of Pure and Applied Algebra, 1996, 113:307-314.
  • 10Kubo F., Non-commutative Poisson algebra structures on affine Kac-Moody algebras, Journal of Pure and Applied Algebra, 1998, 126:267-286.

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部