期刊文献+

Sublaplace和Subelliptic算子的整体Poincaré不等式

Global PoincaréInequalities for Sublaplacians and Other Subelliptic Operators
原文传递
导出
摘要 设f是Heisenberg型群N上局部Sobolev空间W_(loc)^(1,p)(N)中的函数,并且其次椭圆梯度L^P整体可积.本文证明了f在N上存在整体Poincaré不等式.对于Grush算子L=Δ_x+(α+1)~2|x|^(2α)Δ_y(α>0),也得到类似的结论. Let f be in the localized Sobolev space Wloc ^q,p(N) on the Heisenberg type group N. Suppose that the subelliptic gradient is globally Lp integrable. We prove a Poincaré inequality for f on the entire space N. We also show analogous results for Grushin operators like L=△x+(α+1)2|x|2α △Ay(α〉0).
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2009年第1期81-90,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10571044)
关键词 Heisenberg型群 Grush算子 POINCARÉ不等式 SOBOLEV不等式 Heisenberg type groups Grushin operators Poincaré inequalities Sobolev inequalities
  • 相关文献

参考文献2

二级参考文献13

  • 1Juha Heinonen,Ilkka Holopainen.Quasiregular maps on Carnot groups[J].The Journal of Geometric Analysis.1997(1)
  • 2Giorgio Talenti.Best constant in Sobolev inequality[J].Annali di Matematica Pura ed Applicata Series.1976(1)
  • 3Moser J.A sharp form of an inequality by N. Trudinger[].Indiana University Mathematics Journal.1971
  • 4Folland GB.A fundamental solution for a subelliptic operator[].Bulletin of the American Mathematical Society.1973
  • 5Kaplan A.Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms[].Transactions of the American Mathematical Society.1980
  • 6N S Trudinger.On Imbedding into Orlicz Spaces and Some Applications[].Journal of Mathematics and Mechanics.1967
  • 7Lieb EH.Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[].Annals of Mathematics.1983
  • 8.
  • 9O’Neil R.Convolution operators and L(p,q) spaces[].Duke Mathematical Journal.1963
  • 10Carlen,E.,Loss,M.Extremals of functionals with competing symmetries[].Journal of Functional Analysis.1990

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部