期刊文献+

套代数上的零点Lie可导映射 被引量:9

Lie Derivable Mappings at Zero Point on Nest Algebras
原文传递
导出
摘要 设N是维数大于2的复可分Hilbert空间H上的套且r(N)是相应的套代数.本文证明了套代数r(N)上的每一个零点Lie可导映射都具有形式A→AT—TA+λA+h(A)I,其中T∈r(N),λ∈C且h:r(N)→C为一个线性映射. Let N be a nest on a separable Hilbert space H with dim H 〉 2 and T(N) be the associated nest algebra. We prove that every Lie derivable mapping at zero point from T(N) into itself is of the form A→AT-TA+λA+h(A)I, where T∈T(N),λ∈C and h:T(N)→CI is a linear mapping.
作者 陈琳 张建华
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2009年第1期105-110,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10571114) 陕西省自然科学研究计划资助项目(2004A17)
关键词 套代数 Lie可导映射 导子 nest algebra Lie derivable mapping derivation
  • 相关文献

参考文献18

  • 1Zhu J., Generalized derivable mappings at the point zero on nest algebras, Acta Mathematica Sinica, Chinese Series, 2002, 45(4): 783-788.
  • 2Jing W., Lu S., Li P., Characterisations of derivations on some operator algebras, Bull. Austral. Math. Soc., 2002, 66: 227-232.
  • 3Li J., Pan Z., Xu H., Characterizations of isomorphisms and derivations of some algebras, J. Math. Anal. Appl., 2007, 332:1314-1322.
  • 4Zhu J., Xiong C. Generalized derivable mappings at zero point on some reflexive operator algebras, Linear Algebra Appl., 2005, 397: 367-379.
  • 5Zhu J., Xiong C., Derivable mappings at unit operator on nest algebras, Linear Algebra Appl., 2007, 422: 721-735.
  • 6Li P., Ma J., Derivations, local derivations and atomic Boolean subspace lattices, Bull. Austral. Math. Soc., 2002, 66: 477-486.
  • 7Johnson B. E., Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc., 1996, 120: 455-473.
  • 8Cheung W. S., Lie derivation of triangular algebras, Linear and Multilinear Algebra, 2003, 51: 299-310.
  • 9Mathieu M., Villen.a A. R., The structure of Lie derivations on C^* algebras, J. Funct. Anal., 2003, 202: 504-525.
  • 10Zhang J., Lie derivations on nest subalgebras of von Neumann algebras, Acta Mathematica Sinica, Chinese Series, 2003, 46(4): 657-664.

同被引文献58

  • 1HAN DEGUANG Department of Mathematics, Qufa Normal University, Qufu 273165, Shandong, China..CONTINUITY AND LINEARITY OF ADDITIVE DERIVATIONS OF NEST ALGEBRAS ON BANACH SPACES[J].Chinese Annals of Mathematics,Series B,1996,17(2):227-236. 被引量:3
  • 2JOHNSON B E. Symmetric amenability and the nonexistence of Lie and Jordan derivations[ J]. Math Proc Cambridge Philos, 1996, 120: 455-473.
  • 3CHEUNG W S. Lie derivation of triangular algebras[J]. Linear and Multilinear Algebra, 2003, 51 : 299-310.
  • 4BREVSAR M. Commuting traces of biadditive mappings commutativity-preserving mappings and lie mappings[ J]. Trans Amer Math Soc, 1993, 335:525-546.
  • 5BAI Z, DU S. Multiplicafive * -Lie isomorphisms between factors[J]. J Math Anal Appl, 2008, 346: 327-335.
  • 6BEIDAR K I, BRESAR M, CHEBOTAR M A. Applying functional identifies to some linear preserver problems[J]. Pacific J Math, 2002, 204: 257-271.
  • 7DIXMIER J. Von Neumamm Algebras[ M]. New York:North-Holland Publishing Company, 1981.
  • 8POSNER E C. Derivation in prime rings[J]. Proc Amer Math Soc, 1957, 8: 1093-1100.
  • 9HALMOS P R. A Hilbert space problem book[M]. NewYork: Springer-Verlag, 1982.
  • 10WU Jing, LU Shijie, LI Pengtong. Characterizations of derivations on some operator algebras E J ]. Bull Austral Math Soc, 2002, 66:227-232.

引证文献9

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部