期刊文献+

矩阵广义逆的一个混合反序律 被引量:15

A Mixed-Type Reverse Order Law for Generalized Inverse of a Triple Matrix Product
原文传递
导出
摘要 使用矩阵三元组(A,B,C)的乘积型广义奇异值分解,证明了总是存在广义逆矩阵A^((1,2,3)),B^((1,2))和C^((1,2,4)),使得矩阵乘积ABC的Moore-Penrose逆可以表示成如下形式(ABC)^+=C^((1,2,4))B^((1,2))A^((1,2,3)).所获结果是Wibker,Howe和Gilbert的结果的自然推广. For the triple matrix product ABC, we show through the product-product singular value decomposition of matrix triplets (A, B, C) that there exist three general- ized inverses A^(1,2,3), B^(1,2) and C^(1,2,4) such that the Moore-Penrose inverse of ABC can be expressed as (ABC)^t = C^(1,2,4)B^(1,2)A^(1,2,3). The results are the generalization of results obtained by Wibker, Howe and Gilbert.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2009年第1期197-204,共8页 Acta Mathematica Sinica:Chinese Series
基金 上海市教委科技创新项目(07zz171) 上海市教委重点学科建设项目(J51601)
关键词 MOORE-PENROSE广义逆 混合反序律 三矩阵的乘积型广义奇异值分解 Moore-Penrose inverse mixed-type reverse order law product-product singular value decomposition of matrix triplets
  • 相关文献

参考文献1

二级参考文献11

  • 1Hall, F. J.: On the independence of blocks of generalized inverses of bordered matrices. Linear Algebra Appl., 14, 53-61 (1976)
  • 2Hall, F. J., Hartwig, R. E. Further result on generalized inverses of partitioned matrices. SIAM J. Appl. Math., 30, 617-624 (1976)
  • 3Guo, W. B., Liu, Y. H., Wei, M. S.: On the block independence in {1}-inverse of block matrix. Acta Mathematica Sinica, Chinese Series, 47(6), 1205-1212 (2004)
  • 4Wei, M., Guo, W.: On g-inverses of a bordered matrix: revisited. Linear Algebra Appl., 347(1-3), 189-204 (2002)
  • 5Wang, Y.: On the block independence in reflexive inner inverse and M-P inverse of block matrix. SIAM J. Matrix Anal. Appl., 19(2), 407-415 (1998)
  • 6De Moor. B., Zha, H.: A tree of generalizations of the ordinary singular value decomposition. Linear Algebra Appl., 147, 469-500 (1991)
  • 7Ben-Israel, A., Greville, T. N. E.: Generalized Inverses: Theory and Applications, John Wiley &: Sons, New York, 1974
  • 8Campbell, S. L., Meyer, C. D. Jr.: Generalized Inverses of Linear Transformations, Pitman London, San Francisco, 1979
  • 9Hall, F. J., Meyer, C. D. Jr.: Generalized inverses of the fundamental bordered matrix used in linear estimation. Sankhya Set. A., 37 428-438 (1975)
  • 10Marsaglia, G., Styan, G. P. H.: Equalities and inequalities for ranks of matrices. Linear and Multilinear Algebra., 2, 269-292 (1974)

共引文献3

同被引文献65

引证文献15

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部