摘要
使用矩阵三元组(A,B,C)的乘积型广义奇异值分解,证明了总是存在广义逆矩阵A^((1,2,3)),B^((1,2))和C^((1,2,4)),使得矩阵乘积ABC的Moore-Penrose逆可以表示成如下形式(ABC)^+=C^((1,2,4))B^((1,2))A^((1,2,3)).所获结果是Wibker,Howe和Gilbert的结果的自然推广.
For the triple matrix product ABC, we show through the product-product singular value decomposition of matrix triplets (A, B, C) that there exist three general- ized inverses A^(1,2,3), B^(1,2) and C^(1,2,4) such that the Moore-Penrose inverse of ABC can be expressed as (ABC)^t = C^(1,2,4)B^(1,2)A^(1,2,3). The results are the generalization of results obtained by Wibker, Howe and Gilbert.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2009年第1期197-204,共8页
Acta Mathematica Sinica:Chinese Series
基金
上海市教委科技创新项目(07zz171)
上海市教委重点学科建设项目(J51601)