期刊文献+

2-D DOAs estimation in impulsive noise environments using joint diagonalization fractional lower-order spatio-temporal matrices 被引量:3

2-D DOAs estimation in impulsive noise environments using joint diagonalization fractional lower-order spatio-temporal matrices
原文传递
导出
摘要 A novel joint diagonalization fractional lower-order spatio-temporal (ST) moments DOA matrix method is proposed to estimate the 2-D DOAs of uncorrelated narrowband signals in the presence of impulsive noise. The new method retains the advantage of the original ST-DOA matrix method which can estimate 2-D DOAs with neither peak searching nor pair matching. Moreover, it can handle sources with common 1-D angles. Simulation results show that the proposed method yields to better performance to restrain the strong impulsive noise than ST-DOA matrix method, especially for low signal-to-noise ratio case. A novel joint diagonalization fractional lower-order spatio-temporal (ST) moments DOA matrix method is proposed to estimate the 2-D DOAs of uncorrelated narrowband signals in the presence of impulsive noise. The new method retains the advantage of the original ST-DOA matrix method which can estimate 2-D DOAs with neither peak searching nor pair matching. Moreover, it can handle sources with common 1-D angles. Simulation results show that the proposed method yields to better performance to restrain the strong impulsive noise than ST-DOA matrix method, especially for low signal-to-noise ratio case.
出处 《Science in China(Series F)》 2008年第10期1585-1593,共9页 中国科学(F辑英文版)
基金 the National Natural Science Foundation of China (Grant No.60372022) Program for New Century Excellent Talents in University (Grant No.NCET-05-0806)
关键词 DOA fractional lower-order moment impulsive noise joint diagonalization DOA, fractional lower-order moment, impulsive noise, joint diagonalization
  • 相关文献

参考文献4

二级参考文献25

  • 1Schmidt R O. Mutiple emitter location and signal parameter estimation. IEEE Trans Antennas Propagat , 1986;34(3): 276-280.
  • 2R roy, Kailath T. ESPRIT-estimation of signal parameter via rotational invairance techniques. IEEE Trans Signal Processing, 1989; 37(7): 984-999.
  • 3Jerry E G, Dogan M C. Applications of cumulants to array processing-part Ⅳ: direction finding in coherent signals case. IEEE Trans. Signal Processing, 1997; 45(8): 2265-2275.
  • 4Tsakalides P, Nikias C L. The robust covariation-based MUSIC(ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments. IEEE Trans Signal Processing, 1996; 44(7): 1623-1633.
  • 5LIU T H, Mendel J M. An subspace-based direction finding algorithm using fractional lower order statistics. IEEE Trans Signal Processing, 2001; 49(8): 1605-1613.
  • 6Tsihrintzis G A, Nikias C L. Performance of optimum and suboptimum receivers in the presence of impulsive noise modeled as an alpha~stable process. IEEE Trans Comm ,1995; 43(2/3/4): 904-913.
  • 7Tsihrintzis G A, Nikas C L. Fast estimation of the parameters of alpha-stable impulsive interference. IEEE Trans on Signal Processing, 1996; 44(6): 1492-1503.
  • 8Georgiou P G, Tsakalides P, Kyriakakis C. Alpha-stable modeling of noise and robust time-delay estimation in the presence of impulsive noise. IEEE Trans Multimedia,1999; 1(3): 291-301.
  • 9Swindlehurst A, Kailath T. Azimuth/elevation direction finding using regular array geometries. IEEE Trans Aerospace and Electronic Systems, 1993; 29(1): 145-155.
  • 10Liu T H, Mendel J M. Azimuth and elevation direction finding using arbitrary array geometries. IEEE Trans Signal Processing, 1998; 46(7): 2061-2065.

共引文献160

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部