期刊文献+

非线性一般约束优化问题的修正BFGS信赖域算法 被引量:2

Modified BFGS Trust-region Method for General Nonlinear Constrained Optimization Problem
下载PDF
导出
摘要 先通过罚函数法将一般约束优化问题在一定条件下转化为无约束优化问题,再利用无约束优化问题的修正BFGS信赖域算法,进而得到一般约束优化问题的修正BFGS信赖域算法,并通过数值试验表明该算法是有效的。 The modified BFGS update formula is succeed to generalized to inequality constrained optimization problem. The modified BFGS update formula to construct a new trust-region sub-problem is used, and then obtain a modified BFGS trust-region algorithm for inequality constrained optimization problem. Under certain conditions, is proved that the method is feasible.
作者 吴红梅
出处 《科学技术与工程》 2009年第2期379-381,共3页 Science Technology and Engineering
关键词 约束优化 信赖域方法 BFGS信赖域方法 有效性 constrained optimization trust-region method BFGS trust-region method effectiveness
  • 相关文献

参考文献1

二级参考文献10

  • 1袁亚湘.信赖域方法的收敛性[J].计算数学,1994,16(3):333-346. 被引量:60
  • 2Yuan Y,Sun W. Theory and Methods of optimization.Beijing :Science Press of China, 1999.
  • 3Dennis J E,Schnabel R B. Numerical methods for unconstrained optimization and nonlinear equations. Englewood Cliffs:Pretice-Hall Inc, 1983.
  • 4Fletcher R. Practical meethods of optimization. 2nd ed.Chichester :John Wiley &. Sons, 1987.
  • 5Buleau J P,Vial J Ph. Curvilinear path and trust region in unconstrained optimization, a convergence analysis. Math Prog Study, 1987,30: 82-101.
  • 6Shultz G A,Schnabel R B,Byrd R H. A family of trustregion-based algorithms for unconstrained miimization with strong global convergence properties. SIAM J Numer Anal,1985, 22:47-67.
  • 7Byrd R H,Schnabel R B,Shultz G A Approximate solution of the trust region problem by minimization over twodimensional subspaces. Math Prog, 1988,40: 247 - 263.
  • 8Dennis J E,Jr More J J. A characteization of superlinear convergence and its application to Quasi-Newton methods.Math Comp, 1974,28: 1171 - 1190.
  • 9Broyden C G, Dennis J E, More J J. On the local and supelinear convergence of Quasi-Newton methods. J Inst Math Appl, 1973,12: 223 - 246.
  • 10Byrd R,Nocedal J,Yuan Y. Global convergence of a class of Quasi-Newton methods on convex problems. SIAM Journal on Numerical Analysis, 1987,24 : 1171 - 1189.

共引文献16

同被引文献35

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部