期刊文献+

过量表达NtRop1基因增加了植物对盐胁迫的敏感和过氧化氢的含量 被引量:5

原文传递
导出
摘要 Rop/Rho类的小G蛋白是一类重要的信号分子,它在植物的生长发育过程中起着重要的调控作用.根据已知的序列信息,我们从烟草中克隆得到了编码NtRop1基因的基因组序列,并研究了该基因在不同胁迫处理下的表达情况及转基因植物在盐胁迫下的反应.该基因的基因组中含有7个外显子和6个内含子.半定量RT-PCR表明,该基因的表达受到NaCl,甲基紫精(MV)和1-氨基环丙烷-1-羧酸(ACC)的诱导,而脱落酸(ABA)抑制该基因的表达.与野生型拟南芥相比,转基因拟南芥增加了对盐胁迫的敏感性.具体表现为,在盐胁迫下,转基因植株根的长度明显比对照短,并且相对电导率也明显比对照高.通过对过氧化氢含量的测定发现,转基因拟南芥的过氧化氢的含量比对照高.这表明NtRop1基因可能是通过增加植物体内过氧化氢含量从而导致植物对盐胁迫的敏感性。
出处 《中国科学(C辑)》 CSCD 北大核心 2008年第4期311-318,共8页 Science in China(Series C)
基金 国家重点基础研究发展计划(批准号:2006CB100102) 国家高技术研究发展计划(批准号:2006AA10Z18201)
  • 相关文献

参考文献31

  • 1Li H, She J j, Zheng Z L, et al. The Rop GTPase switch controls multiple developmental processes in Arabidopsis. Plant Physiol, 2001, 126:670-684
  • 2Gu Y, Wang Z, Yang Z. ROP/RAC GTPase: an old new master regulator for plant signaling. Curr Opin Plant Biol, 2004, 7:527-536
  • 3Assmann S M. Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell, 2002, 14:S355-373
  • 4Perfus-Barbeoch L, Jones A M, Assmann S M. Plant heterotrimeric G protein function: insights form Arabidopsis and rice mutants. Curr Opin Plant Biol, 2004, 7:719-731
  • 5McCudden C R, Hains M D, Kimple R J, et al. G-protein signaling: back to the future. Cell Mol Life Sci, 2005, 62:551-577
  • 6Nibau C, Wu H M, Cheung A Y. RAC/ROP GTPases: ‘hubs' for signal integration and diversification in plants. Trends Plant Sci, 2006, 11:309-315
  • 7Vernoud V, Horton A C, Yang Z, et al. Analysis of the small GTPase gene superfamily of Arabidopsis thaliana. Plant Physiol, 2003, 131:1191-1208
  • 8Sorek N, Poraty L, Sternberg H, et al. Activation status-coupled transient S acylation determines membrane partitioning of a plant Rho-related GTPase. Mol Cell Biol, 2007, 27:2144-2154
  • 9Yang Z. Small GTPases: versatile signaling switches in plants. Plant Cell, 2002, 14:S375-388
  • 10Winge P, Brembu T, Kristensen R, et al. Genetic structure and evolution of RAC-GTPases in Arabidopsis thaliana. Genetics, 2000, 156:1959-1971

二级参考文献27

  • 1张劲松,周骏马,张弛,陈受宜.水稻耐盐突变体在环境因子胁迫下基因的表达特性[J].中国科学(B辑),1995,25(11):1172-1177. 被引量:15
  • 2Abeles F B, Morgan P W, Saltveit M E Jr. Ethylene in Plant Biology. 2nd ed. San Diego: Academic Press, 1992.
  • 3Wang K L C, Li H, Ecker J R. Ethylene biosynthesis and signaling networks. Plant Cell, 2002, (Supplement): S131 - S151.
  • 4Schaller G E, Bleecker A B. Ethylene binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science, 1995,270: 1809- 1811.
  • 5Hall A E, Findell J L, Schaller G E, et al. Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol, 2000, 123:1449 - 1458.
  • 6Gamble R L, Coonfield M L, Schaller G E. Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci USA, 1998, 95:7825 - 7829.
  • 7Tieman D M, Klee H J. Differential expression of two novel members of the tomato ethylene-receptor family. Plant Physiol,1999, 120:165 - 172.
  • 8Lashbrook C C, Tieman D M, Klee H J. Differential regulation of the tomato ETR gene family throughout plant development.Plant J, 1998, 15: 243- 252.
  • 9Ciardi J A, Tieman D M, Jones J B, et al. Reduced expression of the tomato ethylene receptor gene LeETR4 enhance the hyper sensitive response to Xanthomonas campestris pv. vesicatoria. Mol Plant Microbe Interact. 2001. 14:487 - 495.
  • 10Ciardi J A, Tieman D M, Lund S T, et al. Response to Xanthomonas campestris pv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiol, 2000, 123:81 - 92.

共引文献20

同被引文献39

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部