期刊文献+

基于频域比例边界有限元法的双材料界面裂缝瞬态动应力强度因子的计算 被引量:2

原文传递
导出
摘要 提出了一个基于频域比例边界有限元法的双材料界面裂缝瞬态动应力强度因子的计算方法.因为频域比例边界有限元法的应力解的半解析性质,双材料界面裂缝的复应力奇异性被显式表征,这样复合型动应力强度因子得以从基本定义导出.在得到动应力强度因子的复频响应函数之后,应用快速傅里叶变换和反变换,得到应力强度因子的时程解.模拟了一个典型算例,发现因为比例边界有限元法解的半解析特性,仅用很少的自由度就得到了比较精确的结果.
出处 《中国科学(G辑)》 CSCD 2008年第1期77-88,共12页
基金 教育部留学回国人员科研启动基金(编号:J20050924) 澳大利亚国家Discovery项目基金(编号:DP0452681)资助项目
  • 相关文献

参考文献22

  • 1Chen W H, Wu C W. On elastodynamic fracture mechanics analysis of bimaterial structures using finite element method. Eng Fract Mech, 1981, 15(1-2): 155-168
  • 2Geubelle P H. A numerical method for elastic and viscoelastic dynamic fracture problems in homogeneous and bimaterial systems. Comput Mech, 1997, 20:20-25
  • 3Marur P R, Tippur H V. Dynamic response of bimaterial and graded interface cracks under impact loading. Int J Fract, 2000, 103:95-109
  • 4Dineva P, Gross D, Rangelov T. Dynamic behavior of a bimaterial interface-cracked plate. Eng Fract Mech, 2002, 69(11): 1193-1218
  • 5Lira-Vergara E, Rubio-Gonzalez C. Dynamic stress intensity factor of interfacial finite cracks in orthotropic ma- terials. Int J Fract, 2005, 135:285-309
  • 6Xu X P, Needleman A. Numerical simulations of dynamic crack growth along an interface. Int J Fract, 1996, 74: 289-324
  • 7Nishioka T, Hu Q H, Fujimoto T. Component separation method of the dynamic J integral for evaluating mixed-mode stress intensity factors in dynamic interfacial fracture mechanics problems. JSME Int J Ser A-Solid Mech Mater Eng, 2002, 45(3): 395-406
  • 8Dornowski W, Perzyna P. Numerical analysis of macrocrack propagation along a bimaterial interface under dynamic loading processes. Int J Solids Struct, 2002, 39:4949-4977
  • 9Lei J, Wang Y S, Gross D. Time-domain BEM analysis of a rapidly growing crack in a bimaterial. Int J Fract, 2004, 126(2): 103-121
  • 10WolfJ P, Song C M. Finite-element Modelling of Unbounded Media. Chichester: John Wiley and Sons, 1996

同被引文献32

  • 1崔翔.应用有限元方法计算含有电位悬浮导体的电场分布[J].华北电力学院学报,1995,22(2):1-7. 被引量:39
  • 2董兴其,安同一.静电问题的相似剖分有限元方法[J].微波学报,1996,12(1):15-21. 被引量:4
  • 3何锃,吕浚潮,戴呈豪.新型快速多极边界元法求解电荷任意分布的二维静电场[J].计算物理,2007,24(4):433-438. 被引量:2
  • 4Song Ch , Wolf, J P. Consistent infinitesimal finite element cell method: three-dimensional vector wave equation [J]. International Journal for Numerical Methods in Engineering, 1996,39 : 2189-2208.
  • 5Deeks A J, Cheng L. Potential flow around obstacles using the scaled boundary finite-element method [J]. Int J Numer Mech Fluids, 2003,41 : 721-741.
  • 6徐永斌.工程电磁场基础[M].北京:北京航空航天大学出版社,1992..
  • 7汪琛,王保平,童林夙.计算二维静电场的非正交有限差分算法[J].计算物理,1997,14(3):305-310. 被引量:2
  • 8Song C M,Wolf J P. Consistent infinitesimal finite-el- ement cell method., three dimensional vector wave e- quation[J]. International Journal for Numerical Meth- ods in Engineering,1996,39(2) :189 208.
  • 9Song C M,Wolf J P. The sealed boundary finite-ele- ment method alias consistent infinitesimal finite ele ment cell method for elastodynamics[J]. Computer Methods in Applied Mechanics and Engineering, 1997,147329-355.
  • 10Wolf J P. Response of unbounded soil in sealed boundary finite-element method[J]. Earthquake Engi.neering : Structural Dynamics, 2002,31 : 15 32.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部