期刊文献+

假声带间距对喉腔内压力分布的作用及其对发声的影响

原文传递
导出
摘要 人类的发声不仅仅依赖于声带的振动.目前,越来越多的来自临床和仿真计算的结果都表明:作为喉部一个重要的狭窄通道,假声带(false vocal fold,FVF)在语音的产生过程中发挥着重要作用.本研究利用三维喉物理模型实验系统和仿真计算方法,在3个声门角(均匀声门和收敛/发散40°)、两个最小声门直径(0.04和0.06cm)及8cm水柱跨声门压条件下,对12个假声带间距(从0.02cm变化到2.06cm)在发声过程中的作用分别进行了研究.结果表明:(i)喉腔内压力在假声带间距处于1.5~2倍声门宽度时达到最小,此时气流量达到最大(对应最小的气流阻抗);(ii)与在没有假声带条件下一样,发散声门能够比收敛和均匀声门给出更低的压力和更大的气流;(iii)假声带的出现会在某种程度上降低声门角的作用.更重要的是,(iv)假声带的出现会使得气流分离点向更下游移动,使声门气流喷射得更远,降低整个喉腔阻抗,同时减小气流能量的分散程度,说明假声带对发声效率具有重要影响.结果表明,这些结论应该与现有的发声模型(物理的或仿真计算的)相结合,从而能够更好地理解人类发声的机制.这些结果同时也对与发声问题相关的外科和康复科学研究具有促进作用.
出处 《中国科学(C辑)》 CSCD 北大核心 2008年第10期991-997,共7页 Science in China(Series C)
基金 国家自然科学基金(批准号:30770544) 国家博士后基金(批准号:200704211131)资助项目
  • 相关文献

参考文献19

  • 1Titze I R. Principles of Voice Production. New Jersey: Prentice Hall, 1994. 112-135
  • 2BergJ V D. On the role of the laryngeal ventricle in voice production. Folia Phoniatr Logo, 1955, 7:57-69
  • 3Zhang C, Zhao W, Frankel S H, et al. Computational aeroacoustics of phonation, Part Ⅱ: Effects of flow parameters and ventricular folds. J Acoust Soc Am, 2002, 112(5): 2147-2154
  • 4Nasri S, Jasleen J, Gerratt B R, et al. Ventricular dysphonia: a case of the false vocal fold mucosal traveling wave. Am J Otolaryng, 1996, 17(6): 427-431
  • 5Rosa M d O, Pereira J C, Greelet M, et al. A contribution to simulating a three dimensional larynx model using the finite element method. J Acoust Soc Am, 2003, 114(5): 2893-2905
  • 6Kucinschi B R, Scherer R C, DeWitt K J, et al. Flow visualization of air moving through a model of the larynx. J Biomech Eng, 2006, 128(3): 380-390
  • 7李盛,R.C.Scherer,万明习,王素品.三维声门几何对声门腔内准稳态流场分布的作用及其对发声的影响[J].中国科学(C辑),2005,35(6):558-564. 被引量:1
  • 8Li S, Scherer R C, Wan M, et al. The effect of glottal angle on intraglottal pressure. J Acoust Soc Am, 2006, 119(1): 539-548
  • 9Li S, Scherer R C, Minxi W, et al. Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions. J Acoust Soc Am, 2006, 119(5): 3003-3010
  • 10Scherer R C, Shinwari D, Witt KJ D, et al. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees. J Acoust Soc Am, 2001, 109(4): 1616-1630

二级参考文献11

  • 1Titze I R, Story B H. Rules for controlling low-dimensional vocal fold models with muscle activation. J Acoust Soc Am, 2002,112(3): 1064-1076.
  • 2Zhang Z, Mongeau L, Frankel S H. Experimental verification of the quasi-steady approximation for aerodynamic sound generation by pulsating jets in tubes. J Acoust Soc Am, 2002, 112(4): 1652-1663.
  • 3Alipour E Scherer R C. Flow separation in a computational oscillating vocal fold model. JAcoust Soc Am, 2004, 116(3): 1710-1719.
  • 4Guo C G, Scherer R C. Finite element simulation of glottal flow and pressure. J Acoust Soc Am, 1993, 94(2): 688-700.
  • 5Hofmans G C .l, Groot G, Ranucci M, et al. Unsteady flow through in-vitro models of the glottis..l Acoust Soc Am, 2003, 113(3): 1658-1675.
  • 6Scherer R C, Shinwari D. Glottal pressure profiles for a diameter of 0.04 cm. J Acoust Soc Am, 2000, 107(5): 2905.
  • 7Alipour E Scherer R C. Pressure and velocity profiles in a static mechanical hemilarynx model. J Acoust Soc Am, 2002, 112(6):2996-3003.
  • 8Ishizaka K, Matsudaira M. Fluid mechanical considerations of vocal fold vibration. Speech Communications Research, 1972, 36:112-131.
  • 9Gauffin J, Binh N, Ananthapadmanabha T V, et al. Glottal geomeay and volume velocity waveform. Vocal Fold Physiology, 1983,47:194-201.
  • 10Scherer R C, Titze I R, Curtis J F. Pressure-flow relationships in two models of the larynx having rectangular glottal shapes. J Acoust Soc Am, 1983, 73(2): 668-676.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部