期刊文献+

基于频域相位共轭技术的光纤偏振信号的失真抑制 被引量:2

原文传递
导出
摘要 理论分析了信号在频域中的相位共轭变换,分析表明,当输入信号取频域相位共轭后,其输出信号相当于输入信号时域包络的相位共轭和时间反转.在此基础上,分析了在双折射光纤中基于频域相位共轭技术的偏振信号失真的抑制和补偿机理,数值模拟了偏振孤子信号和偏振Gauss信号在中距相位共轭光纤系统中的传输演化过程.结果表明,利用频域相位共轭技术能够准确复原双折射光纤系统中的初始输入偏振信号,同时能够补偿色散和复原非线性效应所导致的信号失真.
作者 步扬 王向朝
出处 《中国科学(G辑)》 CSCD 2008年第2期113-119,共7页
  • 相关文献

参考文献13

  • 1Agrawal G P. Nonlinear Fiber Optics. 3rd ed. San Diego: Academic Press, 2001. Chapter 2, 5, 6
  • 2Willner A E, Reza S M, Nezam M, et al. Monitoring and control of polarization-related impairments in optical fiber systems. J Lightwave Technol, 2004, 22(1): 106-125
  • 3宁提纲,谭中伟,李唐军,傅永军,刘艳,裴丽,简水生.Gauss脉冲在超高偏振模色散光纤中的传输[J].中国科学(E辑),2003,33(5):443-446. 被引量:1
  • 4Sunnerud H, Li J, Xie C, et al. Experimental quantification of soliton robustness to polarization mode dispersion in conventional and dispersion-managed systems. J Lightwave Technol, 2001, 19(10): 1453-1461
  • 5Mollenauer L F, Smith K, Gordon J P. Resistance of solitons to the effects of polarization dispersion in optical fibers. Opt Lett, 1989, 14(21): 1219-1221
  • 6Menyuk C R. Stability of solitons in birefringent optical fibers. Ⅰ: Equal propagation amplitudes. Opt Lett, 1987, 12(8): 814-816
  • 7He G S. Optical phase conjugation: Principles, techniques, and applications. Progr Quant Electron, 2002, 26: 131-191
  • 8Miller D A B. Time reversal of optical pulses by four-wave mixing. Opt Lett, 1980, 5(7): 300-302
  • 9Saari P M, Kaarli R K, Sarapuu R V, et al. Polarization-preserving phase conjugation and temporal reversal of an arbitrarily-polarized pulsed optical signal by means of time and-space domain holography. IEEE J Quant Electron, 1989, 23(3): 339-345
  • 10Weiner A M, Leaird D E, Reitze D H, et al. Femtosecond spectral holography. IEEE J Quant Electron, 1992, 28(10): 2251-2261

二级参考文献2

同被引文献17

  • 1步扬,王向朝.基于频域相位共轭技术的交叉相位调制所致失真的复原[J].物理学报,2005,54(10):4747-4753. 被引量:9
  • 2诸波,杨祥林.光纤孤子型3R中继器及其性能分析[J].中国科学(E辑),2007,37(4):581-588. 被引量:1
  • 3He G S. Optical phase conjugation.- principles, techniques, and applications[J]. Progress in Quantum Electron. , 2002,26(3) : 131-191.
  • 4Yariv A, Fekete D, Pepper D M. Compensation for channel dispersion by nonlinear optical phase conjugation[J]. Opt. Lett. ,1979,4(2):52-54.
  • 5Fisher R A, Suydam B R. Optical phase conjugation for time-domain undoing of dispersive self-phase- modulation effects[J]. Opt. Lett. , 1983,8 (12) : 611- 613.
  • 6Liu Xuejun,Qiao Yaojun, Ji Yuefeng. Reduction of the fiber nonlinearity impairment using optical phase conjugation in 40 Gb/s CO-OFDM systems[J]. Opt. Commun. , 2010,28(3) : 2749-2753.
  • 7Pechenkin V, Fair I J. On four-wave mixing suppression in dispersion-managed fiber-optic OFDM systems with an optical phase conjugation module[J]. J. of Lightwave Technol. ,2011,29(11) :1678-1691.
  • 8Tsang M, Psaltis D. Dispersion and nonlinearity compensation by spectral phase conjugation[J]. Opt. Lett. ,2003,28(17) :1558-1560.
  • 9Tsang M, Psaltis D. Spectral phase conjugation withcross-phase modulation compensation [ J ]. Opt. Express,2004,12(10) :2207-2219.
  • 10Armstrong J. OFDM for optical communications[J]. J. of Lightwave Technol. ,2009,27(3) : 189-201.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部