关于平面调和映射的Bloch常数的估计
被引量:1
摘要
考虑了拟正则调和映射和开的平面调和映射的Bloch常数,得到了较好的结果,所得结果推广了陈怀惠等及Grigoryan的结果.
出处
《中国科学(A辑)》
CSCD
北大核心
2008年第8期851-858,共8页
Science in China(Series A)
基金
国家自然科学基金(批准号:10471048)
高等学校博士点基金(批准号:20050574002)资助项目
参考文献10
-
1Lewy H. On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull Amer Math Soc, 42: 689-692 (1936).
-
2Chen H H. On the Bloch constant. In: Arakelian N, Gauthier P M, eds. Approximation, Complex Analysis, and Potential Theory. Dordrecht: KLuwer Acad Publ, 2001, 129-161.
-
3Laudau E. Der Picard-Schottysche Satz und die Blochsche Konstanten. Sitzungsber Preuss Akad Wiss Berlin Phys.-Math Kl, 1926, 467-474.
-
4Chen H H, Gauthier P M, Hengartner W. Bloch constants for planar harmonic mappings. Proc Amer Math Soc, 128:3231-3240 (2000).
-
5Graham I, Kohr G. Geometric Function Theory in One and Higher Dimensions. New York: Marcel Dekker Inc, 2003.
-
6Dorff M, Nowak M. Landau's theorem for planar harmonic mappings. Comput Meth Funet Theory, 4(1): 151-158 (2000).
-
7Grigoryan A. Landau and Bloch theorems for harmonic mappings. Complex Variable Theory Appl, 51(1): 81-87 (2006).
-
8Huang X Z. Estimates on Bloch constants for planar harmonic mappings. J Math Anal Appl, 337:880-887 (2007).
-
9熊成继,陈怀惠.Julia引理和Bloch常数[J].中国科学(A辑),2002,32(9):791-796. 被引量:1
-
10Kuang J C. Applied Inequalities, 3nd ed. Jinan: Shandong Science and Technology Press, 2004.
二级参考文献11
-
1[5]Minda C D. Bloch constants. J D'Analyse Math, 1982, 41:54~84
-
2[6]Ahlfors L V. An extension of Schwarz's lemma. Trans Amer Math Soc, 1938, 43:359~364
-
3[7]Ahlfors L V. Conformal Invariants: Topics in Geometric Function Theory. New York: McGraw-Hill, 1973.14~15
-
4[8]Ahlfors L V, Grunsky H. Uber die Blochsche Konstante. Math Z, 1937, 42:671~673
-
5[9]Bonk M. On Bloch's constant. Proc Amer Math Soc, 1990, 110:889~894
-
6[10]Chen H, Gauthier P M. On Bloch's constant. J Anal Math, 1996, 69:275~291
-
7[11]Liu X, Minda C D. Distortion theorems for Bloch functions. Trans Amer Math Soc, 1992, 333:325~338
-
8[1]Valiron G. Lectures on the General Theory of Integral Functions. 2nd ed. New York: Chelsea, 1949
-
9[2]Bloch A. Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l'uniformisation. Ann Fac Sci Univ, Toulouse III, 1926, 17:1~12
-
10[3]Landau E. Der Picard-Schottkysche Satz und die Blochsche Konstanten. Sitz Preuss Akad Wiss. Berlin, Phys-Math KI, 1926. 467~474
同被引文献13
-
1Chen H H, Gauthier P M, Hengartner W. Bloch constants for planar harmonic mappings. Proc Amer Math Soc, 2000 128:3231-3240.
-
2Dorff M, Nowak M. Landau's theorem for planar harmonic mappings. Comput Methods Funct Theory, 2004, 4 151-158.
-
3Grigoryan A. Landau and Bloch theorems for harmonic mappings. Complex Var Elliptic Equ, 2006, 51:81-87.
-
4Huang X Z. Estimates on Bloch constants for planar harmonic mappings. J Math Anal Appl, 2007, 337:880-887.
-
5Abdulhadi Z, Muhanna Y, Khuri S. On univalent solutions of the biharmonic equations. J Inequal Appl, 2005, 5 469-478.
-
6Abdulhadi Z, Muhanna Y, Khuri S. On some properties of solutions of the biharmonic equation. Appl Math Comput 2006, 177:346-351.
-
7Abdulhadi Z, Muhanna Y. Landau's theorem for biharmonic mappings. J Math Anal Appl, 2008, 338:705-709.
-
8Liu M S, Liu Z W. On Bloch constants for certain harmonic mappings. Southeast Asian Bull Math, 2013, 37:211-220.
-
9Liu M S. Landau's theorems for biharmonic mappings. Complex Var Elliptic Equ, 2008, 53:843-855.
-
10Liu M S. Landau's theorems for planar harmonic mappings. Comput Math Appl, 2009, 57:1142-1146.
-
1方明亮.─族亚纯函数的正规定则[J].数学学报(中文版),1994,37(1):86-90. 被引量:1
-
2陈海波,李晓东.分担值与正规族[J].淮阴师范学院学报(自然科学版),2011,10(1):18-21.
-
3李纯红.微分多项式具有重值的亚纯函数的奇异方向[J].四川师范学院学报(自然科学版),1993,14(1):7-15. 被引量:2
-
4张莎莎,祖韦华.一族亚纯函数的正规定则[J].湖北大学学报(自然科学版),2014,36(1):31-34.
-
5尚海涛.分担值与亚纯函数的正规族[J].重庆师范大学学报(自然科学版),2013,30(6):106-108.
-
6张太忠.单项式f(f^(k))^n与正规族[J].南京大学学报(数学半年刊),2000,17(2):274-277. 被引量:2
-
7李纯红.关于亚纯函数的奇异方向[J].四川师范学院学报(自然科学版),2000,21(3):248-251.
-
8章启兵,李进东.涉及微分单项式的亚纯函数族的一个正规定则[J].西华师范大学学报(自然科学版),2005,26(1):5-9.
-
9卢谦,韩润生,顾永兴.亚纯函数的Valiron亏函数[J].数学学报(中文版),2004,47(4):735-740.
-
10李东征,陈行堤.调和映照的Landau定理[J].华侨大学学报(自然科学版),2012,33(5):584-589. 被引量:4