期刊文献+

不同废水基质条件下微生物燃料电池中细菌群落解析 被引量:16

Analysis of microbial diversity in microbial fuel cells under different wastewater
下载PDF
导出
摘要 搭建了1个小型连续运行的无介体微生物燃料电池(MFC),分别以2种不同的有机废水为进水基质,均成功地实现了连续产电,同时对废水中的有机物也具有很好的去除效果.以葡萄糖为基质的微生物燃料电池的输出电压为435mV,以厌氧出水为基质的燃料电池的输出电压为475mV,2种基质系统中,COD去除率均达到60%以上.采用构建16S rRNA基因文库、随机测序的方法,对不同基质阳极表面的微生物群落结构进行研究.结果表明,产电阳极表面的细菌种类会发生很大变化,但其中几类与产电相关细菌的相对含量的变化不大,主要是低G+C革兰氏阳性细菌,变型细菌β亚纲(β-proteobacteria)和变型细菌δ亚纲(δ-protecobacteria)的细菌.本试验中的高产电细菌可能属于地杆菌科(Geobacteraceae). A small microbial fuel cell (MFC) was operated continuously with two different influent, in which the COD was removed efficiently and electricity was generated simultaneously. The exported voltages for MFC were about 435 mV for MFC fed by glucose and 475 mV fed by anaerobic effluence,while COD removal efficiencies were all above 60%. With 16S rRNA genomic library construction and random sequencing,the diversity of microbes on anodes surface were detected respectively. Eubacteria community structures on anode surfaces changed greatly by different influent,but several relative electrochemically active microbes such as low G+C gram positive bacteria, β-proteobacteria and δ-protecobacteria did not change much. The possible high electrochemically active bacteria belong to Geobacter.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2008年第12期1068-1073,共6页 China Environmental Science
基金 中国博士后基金资助项目(2005038073)
关键词 微生物燃料电池(MFC) 产电细菌 阳极 群落结构 基质 microbial fuel cells (MFC) electrochemically active microbes anode community structure substance
  • 相关文献

参考文献13

  • 1Kim H J, Park H S, Hyun M S. A mediator-less microbial fuel cell using a metal reducing bacterium,Shewanella putrefaciens [J]. Enzyme Microbial Technology, 2002,30:145-152.
  • 2宝玥,吴霞琴.生物燃料电池的研究进展[J].电化学,2004,10(1):1-8. 被引量:20
  • 3Logan B E, Regan J M. Microbial fuel cells-challenges and applications [J]. Environment Science and Technology, 2006,40: 5172-5180.
  • 4Bullen R A, Arnot T C, Lakemanc J B, et al. Biofuel cells and their development [J]. Biosansors and Bioeleetronies, 2006,21:2015-2045.
  • 5Bond D R, Lovley K R. Electricity production by geobaeter sulfurreducens attached to electrodes [J]. Applied and Environmental Microbiology, 2003,69:1548-1555.
  • 6Lee J, Phung T N, Chang I S. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rRNA analysis [J]. FEMS Microbiology Letters, 2003,223:185-191.
  • 7Reimers C E, Tender L M, Fertig S. Harvesting energy from the marine sediment- water interface [J]. Environment Science and Technology, 2001,35:192-195.
  • 8Leang C, Coppi M V, Lovley D R. A c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurre-ducens [J]. Journal of Bacteriology, 2003,185,2096-2103.
  • 9Sambrook J, Ffitsch E F, Maniatis T. Molecular cloning: a laboratory manual [M]. 2nd. New York: Cold Spring Harbor Laboratory Press, 1989.
  • 10Gemma R, Kevin D M, Teena M. Extracellular electron transfer via microbial nanowires [J]. Nature, 2005,435(23): 1098-1101.

二级参考文献40

  • 1LI Xi-guang GAO Ying LU Tian-hong et al.Electrocatalytic behavior of microperoxidase-11 adsorbed on activated carbon for reduction of oxygen and hydrogen peroxide[J].应用化学,2000,19(3):285-285.
  • 2Nicolas Mano, Fei Mao, Adam Heller. A miniature biofuel cell operating in a physiological buffer[J]. J Am Chem Soc , 2002, 124:12 962.
  • 3Willner I, Katz E, Patolsky F, et al. Biofuel cell based on glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes[J].J Chem Soc, Perkin Trans, 1998,2:1 817.
  • 4Tsujimura S, Tatsumi H, Ogawa J, et al. Bioelectrocatalytic reduction of dioxygen to water at neutral pH using bilirubin oxidase as an enzyme and 2, 2%-azinobis(3-ethytbenzothiazolin-6-sulfonate) as an electron transfer mediator[J]. J. Electroanal Chem, 2001,496: 69.
  • 5Tayhas G, Palmore R, Kim H H. Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell[J]. J Electroanal Chem, 1999, 464. 110.
  • 6Willner I, Katz E. Integration of layered redox proteins and conductive supports for bioelectronic applications[J].Angew Chem Int FA, 2000,39:1 180.
  • 7Willner I, Willner B. Biomaterials integrated with dectrmic dements: en route to bioelectronics[J]. Trends Biotechnol, 2001, 19: 222.
  • 8Willner I, Arad G, Katz E. A biofuel cell based on pyrroloquioline and microperoxidase-11 monolayer-functionalize electrodes[J]. Bioelectrochem Bioenerg, 1998, 44: 209.
  • 9Katz E, Filanovsky B, WiUner I. A biofuel cell based on two immiscible solvents and glucose oxidase and microperoxidase- 11 monolayer-functionalized electrodes[J ]. New J Chem, 1999, 23 : 481.
  • 10Pizzariello A, Stred' ansky M, Miertus S. A glucose/hydrogen peroxide biofud cell that uses oxidase and peroxidase as catalysts by composite bulk-mcxlified bioelectrodes based on a solid binding matrix[J]. Bioelectrochemistry, 2002, 56: 99.

共引文献25

同被引文献277

引证文献16

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部