期刊文献+

一种基于改进K-means的文档聚类算法的实现研究 被引量:7

Algorithm and Experiment Research of Textual Document Clustering Based on Improved K-means
下载PDF
导出
摘要 在对文档聚类的含义、作用和一般过程的阐述基础上,分析一种基于"最小最大"原则初始质心优选的改进K-means聚类的基本思想,并重点设计相关的聚类算法,实现聚类系统,基于系统对300篇学术文档及其相关特征词语进行聚类实验。实验结果表明,本文所设计和实现的改进K-means的聚类算法表现出较好的性能。 After a concise introduction of conotation,functions and general processs of textual document clustering, this paper expotiates the basic mechanism of a kind of improved K - means clustering based on initial eentroids selection through minimum - maximum principle, designs its algorithm, implements the clustering system, and conducts several experiments taking 300 academic articles and relative characteristic words for instances, which prove the good performance of the algorithm proposed.
出处 《现代图书情报技术》 CSSCI 北大核心 2008年第12期73-79,共7页 New Technology of Library and Information Service
关键词 文档聚类 K—means Textual document clustering K- means
  • 相关文献

参考文献4

二级参考文献67

  • 1陈浩,何婷婷,姬东鸿.基于k-means聚类的无导词义消歧[J].中文信息学报,2005,19(4):10-16. 被引量:16
  • 2刘远超,王晓龙,刘秉权.一种改进的k-means文档聚类初值选择算法[J].高技术通讯,2006,16(1):11-15. 被引量:23
  • 3Hatzivassiloglou V, Klavans J L, Holcombe M L, et al.Simfinder: A flexible clustering tool for surmnarization. In: Proceedings of the NAACI, 2001 Workshop on Automatic Surrunarization, Pittsburgh, PA, 2001, 41-49 .
  • 4Jain A K,Dubes R C. Algorithms for clustering data. Englewood Cliffs NJ, USA: Prentice Hall, 1988.
  • 5Sneath P H, Sokal R R. Numerical Taxonomy. London, UK:Freeman. 1973.
  • 6King B. Step-wise clustering procedures. Journal of the Amercian Statistical Association , 1967, 69(8) :86-101.
  • 7Guha S, Rastogi R, Shim K. CURE: An efficient clustering algorithm for large databases. Information Systems, 2001, 26( 1 ) : 35-58.
  • 8Guha S, Rastogi R, Shim K. ROCK: a robust clustering algorithm for categorical attributes. In : Proceedings of the 15th International Cotfference on Data Engineering. Sydney: IEEE Computer Society Press, 1999. 512-521.
  • 9Karypis G, Han E H, Kumar V. Chameleon: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer, 1999, 32(8) :68-75.
  • 10Han E H, Karypis G,Kumar V, et al. Clustering based on association rule hypergraphs. In: 1997 SIG-MOD Workshop on Research Issues on Data Mining and Knowledge Discovery, Tucson, Arizona, USA, 1997. 9-13.

共引文献98

同被引文献55

引证文献7

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部