期刊文献+

多资源受限条件下工程集成管理优化问题研究 被引量:2

Research On Multi-Resource Constrained Project Integration Management Optimization Problem
下载PDF
导出
摘要 本文建立了多资源受限条件下工程集成管理优化的模型,该模型的求解属于国际上公认的NP—hard难题之一,利用基于优先权的编码技术使得模型的求解成为可能,提出同时具有惯性权重和限定因子参数的改进版本微粒群算法,编制其matlab求解源程序,运用在以管道水平定向钻穿越工程为实例的集成管理优化模型中,微粒群算法程序在求解过程表现出了高效的搜索能力,获得了满意的优化结果。最后,着重讨论了在微粒群算法参数设计中微粒个体意识与集体意识的比较分析和微粒群种群规模与协同搜索能力的关系。 This paper set up multi--resource constrained optimization model of project integration management which belongs to international legalized NP (non- deterministic polynomial completeness)- hard problem, and by using priority--based encoding so that made solving the model possible. And then, this paper imported particle swarm optimization and advised a new version of particle swarm optimization which had both inertia weight and constriction factor parameters. The author wrote Matlab procedure and applied it in integration management optimization problem that took pipeline horizontal direction driiling project for example. Particle swarm optimization performed high efficient search capability in solving process and gained approving optimum results. In the end, this paper put stress on analyzing particle individual consciousness versus collective consciousness and the relationship between particle swarm size and ability of co --operation searching in particle swarm optimization parameter design.
作者 李强 张静
出处 《中国管理科学》 CSSCI 2008年第6期123-129,共7页 Chinese Journal of Management Science
关键词 多资源受限 集成管理 NP—hard难题 微粒群算法 优先权的编码 multi-- resource constrained integration management NP-- hard problem PSO priority-- based encoding
  • 相关文献

参考文献13

  • 1McKim R. , Hegazy T. , Aualla M. Project performance control in reconstruction projects [J]. Journal of Construction Engineering and Management, 2000, 126 (2):137--141.
  • 2Rainer Kolisch, Soonke Hartmann. Experimental investigation of heuristics for resource constrained project scheduling.. An update[J]. European Journal of Operational Research, 2006,174 :23--37.
  • 3刘士新,王梦光,聂义勇.多执行模式资源受限工程调度问题的优化算法[J].系统工程学报,2001,16(1):55-60. 被引量:24
  • 4谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422
  • 5王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:86
  • 6Ratnaweera A. , Halgamuge S. K. , Watson H. C. Self --organizing Hierarchical Particle Swarm Optimizer With Time--varying Acceleration Coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 240--255.
  • 7Cheng, R. and M. Gen. Evolution program for Resource constrained project Scheduling problem [C].IEEE World Congress on Computatioml Intelligence, 1994,2: 736--741.
  • 8Cheng, R. and M. Gen. Resource constrained project Scheduling problem using genetic algorithms[J]. International Journal of Intelligent Automation and Soft Computing, 1997,3(3): 78--286.
  • 9Kennedy J. , Eberhart R. Particle swarn optimization [C]. Pro IEEE Int Conf on Neural Networks, Perth, 1995.. 1942--1948.
  • 10Eberhart R. , Kennedy J. A new optimizer using particle swarm theory[C]. Proc 6th Int Symposium on Micro Machine and Human Science, Nagoya, 1995: 39-- 43.

二级参考文献44

  • 1[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 2[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 3[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 4[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 5[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 6[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 7[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 8[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 9[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.
  • 10[6]Kennedy J. The particle swarm: Social adaptation of knowledge[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Indiamapolis,1997.303-308.

共引文献538

同被引文献19

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部