期刊文献+

基于改进SUSAN原则的车辆检测方法 被引量:4

Vehicle Detection Based on Improved SUSAN Algorithm
下载PDF
导出
摘要 为解决汽车辅助驾驶系统中目标车辆检测的实时性和鲁棒性问题,提出一种基于单目视觉的车辆检测系统,将改进的SU—SAN(Smallest Univalue Segment Assimilating Nucleus,即最小核值相似区)算法应用到车辆边缘检测中;采用自适应双阈值法检测车底阴影。结合车道线参数动态规划车辆初始检测区域;在检测区域中,采用改进的SUSAN算法定位车辆边缘,生成车辆假设;最后根据车辆的纹理、形状和位置特征来验证车辆假设;为改善系统性能,采用Kalman滤波算法对检测到的目标进行跟踪;使用实际采集的道路图像序列对系统进行测试。实验表明,该系统能够及时准确地检测前方目标车辆。 In order to achieve the real--time and robustness of vehicle detection in a driver assistance system, a method of vehicle detec tion based on a single camera is developed using improved SUSAN algorithm. First, the adaptive double threshold is used to detect shadow under vehicle. The initial detection region is dynamically estimated according to shadow positions and lane parameters. Then improved SU SAN algorithm is used to locate vehicle edge and generate hypotheses of vehicle in this region. The texture, shape and position features of vehicle are used to verify the hypotheses. Finally, The Kalman filter is used to track objects to improve the system performance. The system is tested with image sequences taken on roads. Experiment results show that the system can detect proceeding vehicles effectively.
出处 《计算机测量与控制》 CSCD 2008年第12期1792-1794,1808,共4页 Computer Measurement &Control
基金 北京市教委重点项目 北京市自然科学基金项目资助(KZ20041000501)。
关键词 车辆检测 阴影特征 SUSAN算法 KALMAN滤波 vehicle detection shadow feature SUSAN algorithm Kalman filter
  • 相关文献

参考文献9

  • 1Sappa A D, Geronimo D, Dornaika F, Lopez. A. Real time vehicle pose using on-board stereo vision system [A]. ICIAR 2006: proceedings of the Third International Conference on Image Analysis and Recognition, Part Ⅱ, September 18--20, 2006 [C]. Berlin: Springer, c2006.
  • 2Bertozzi M, Broggi A. GOLD.. a parallel real--time stereo vision system for generic obstacle and lane detection [J]. IEEE Transac tions on Image Processing, 1998, 7 (1): 62--81.
  • 3张奇,顾伟康.激光测距雷达距离图障碍物实时检测算法研究及误差分析[J].机器人,1997,19(2):122-128. 被引量:9
  • 4Sun Z H, George B, Ronald M support vector machines for on Quantized wavelet features and road vehicle detection [A]. Sev enth International Conference on Control Automation, Robotics and Vision (ICARCV' 02). [C]. Singapore, 2002: 1641-1646.
  • 5郭磊,李克强,王建强,连小珉.一种基于特征的车辆检测方法[J].汽车工程,2006,28(11):1031-1035. 被引量:22
  • 6Smith S M, Brady J M. SUSAN--a new approach to low level image proceasing [J]. Journal of Computer Vision, 1997, 23 (1): 45-78.
  • 7毕务忠,严高师.基于改进SUSAN原则的小目标检测算法[J].激光与红外,2006,36(6):504-507. 被引量:11
  • 8Otsu N. A threshold selection method from gray--level histograms [J].IEEE Trans. on Systems, Man and Cybernetics, 1979, 9 (1): 62--66.
  • 9张华熊,吕辉,翁向军.基于信息熵的图像置乱程度评价方法[J].电路与系统学报,2007,12(6):95-98. 被引量:23

二级参考文献18

  • 1柏森,廖晓峰.基于Walsh变换的图像置乱程度评价方法[J].中山大学学报(自然科学版),2004,43(A02):58-61. 被引量:39
  • 2谭晓军,沈伟,郭志豪.一种基于视频的道路交通流量监测方法[J].计算机应用,2005,25(5):1215-1218. 被引量:20
  • 3赵英男,杨静宇.基于Gabor滤波器和SVM分类器的红外车辆检测[J].计算机工程,2005,31(10):191-192. 被引量:7
  • 4Smith S M, Brady J M. SUSAN-a new approach to low level image processing [J]. Journal of Computer Vision,1997,23 ( 1 ) :45 - 78.
  • 5Otsu N. A threshold selection method from gray-level histogram[J]. IEEE Trans. on Systems, Man and Cybernetics, 1979,9( 1 ) :62 -66.
  • 6Health A, Sarkar S, Sanocki T, et al. Comparison of Edge Detectors : A Methodology and Initial Study [J]. Computer Vision and Image Understanding, 1998,69 ( 1 ) : 38 - 54.
  • 7Canny J. A Computational Approach to Edge Detection[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1986,8 ( 1 ) :676 - 697.
  • 8Kruger W,Enkelmann W,Rossle S.Real-time Estimation and Tracking of Optical Flow Vectors for Obstacle Detection[C].Proc.IEEE Ⅳ.Detroit,MI:1995:304 -309.
  • 9Franke U,Gavrila D,G(o)rzig S,et al.Autonomous Driving Goes Downtown[J].IEEE Intelligent Systems & Their Applications,1998,13 (6):40-48.
  • 10Sun Z H,George B,Ronald M.Quantized Wavelet Features and Support Vector Machines for On-road Vehicle Detection[C].Seventh International Conference on Control,Automation,Robotics and Vision (ICARCV' 02).Singapore,2002:1641-1646.

共引文献60

同被引文献29

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部