摘要
利用ALE(任意的Lagrange-Euler)边界元方法数值求解了具有自由液面的非线性晃动问题,即受外力激励下流体的非线性振动问题。把ALE有限元方法的思想应用到边界元方法中,得到了ALE边界元方法。对于自由液面的非线性动力边界条件,应用Galerkin加权方法进行了有限元数值离散。为了增加求解精度,对动力边界条件提出了增加误差修正项的数值求解方法。对时间变量采用Newmark方法进行离散。推导了系统非线性方程的预测-多次校正法迭代格式。进行了算例分析与比较,得到了令人比较满意的结果。
The ALE(Arbitrary Lagrange Euler)boundary element method is used for dealing with nonlinear sloshing problem(nonlinear oscillations of a liquid in a container subjected to forced oscillation) The ALE boundary element methods is derived by applying the idea of ALE finite element method The dynamic boundary condition is redused to a weighted residual equation by employing the Galerkin nethod Due to the nonlinearity of the problem,a general corrective procedure is used for the numerical analysis The system equation is discretized by the use of Newmark Method timewise and the predict multi corrective steps method is used in iteration procedure At last,computation example and computed result is given
出处
《宇航学报》
EI
CAS
CSCD
北大核心
1998年第1期1-7,共7页
Journal of Astronautics
基金
国家自然科学基金
高等学校博士学科点专项科研基金
关键词
液体晃动
边界元
ALE
自由液面
Fluid sloshing Boundary element method ALE boundary element method