期刊文献+

基于最大波动分析的稳健设计 被引量:3

Robust Optimization Design Based on Maximal Variation Analysis
下载PDF
导出
摘要 针对稳健设计中目标函数以及约束的稳健性两个方面,提出了一种基于最大波动分析的稳健设计优化方法。通过分析不确定因素对目标函数以及约束的影响,计算目标函数以及约束的最大波动量,将约束的最大波动值添加到原约束中以保证约束的稳健可行性;同时在原有优化模型上添加新约束保证目标函数的最大波动值不超过设计者规定的范围,从而构造了两级稳健设计优化数学模型。顶级优化用来求解原有常规优化的数学模型;次级优化用来判断目标函数以及约束的稳健性。最终实例结果证明该方法是可行的。 In view of robustness of objective function and constraints in robust design, a new robust design method based on maximal variation analysis was proposed. Firstly, the principle of variations which have been generated in objective functions and constraints by considering the uncertain factors in design variables and design parameters were analyzed, then the maximal variations of objective function and constrains were estimated by using maximal variation analysis. The maximal variations of constraints were added to original constraints to guarantee feasibility of constraints; a new constraint has been added to original optimization problem to ensure the variation of objective function was less than the value which designer set, and then a bi-level mathematical optimal model was constructed. The toplevel optimization was used to solve the original mathematical model; the lower-level optimization was used to judge the robustness of objective function and constraints. Example results showed that the proposed approach is feasible.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2008年第12期162-165,共4页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家"973"重点基础研究发展计划资助项目(项目编号:2007CB714000) 辽宁省科学技术计划工业攻关项目(项目编号:2006219012)
关键词 最大波动分析 目标函数稳健性 约束可行性 稳健设计 Maximal variation analysis, Objective function robustness, Constraints feasibility robustness, Robust design
  • 相关文献

参考文献9

  • 1Taguchi G. Quality engineering through design optimization[M]. New York: Krauss International Press, 1986.
  • 2Bailing R J, Free J C, Parkinson A R. Consideration of worst-case manufacturing tolerances in design optimization [J]. ASMEJ. Mech. Des., 1986, 108(3): 438-441.
  • 3Belegundu A D, Zhang S. Robustness of design through minimum sensitivity [J]. ASME J. Mech. Des., 1992, 114(2) : 213-217.
  • 4Zhu J, Ting K L. Performance distribution analysis and robust design[J]. ASME J. Mech. Des., 2001, 123(1) : 11-17.
  • 5Eggert R J. Quantifying design feasibility using probabilistic feasibility analysis [C]//Proceedings Of ASME Advances in Design Automation. New York: ASME, 1991:235-240.
  • 6Du X, Chen W. Towards a better understanding of modeling feasibility robustness in engineering design[J]. ASME J. Mech. Des., 2000, 122(4): 385-394.
  • 7Chen W, Allen J K, Mistree F, et al. A procedure for robust design: minimizing variations caused by noise factors and control factors[J]. ASME J. Mech. Des., 1996, 118(4): 478-485.
  • 8许焕卫,黄洪钟,何俐萍.稳健设计中的稳健可行性分析[J].清华大学学报(自然科学版),2007,47(z2):1721-1724. 被引量:7
  • 9Xiong Y, Rao S S. Fuzzy nonlinear programming for mixed-discrete design optimization through hybrid genetic algorithm [J]. Fuzzy Sets and Systems, 2004, 146(2): 167-186.

二级参考文献12

  • 1[1]Taguchi G.Quality Engineering Through Design Optimization[M].NY:Krauss International Press,1986.
  • 2[2]Phadke M S.Quality Engineering Using Robust Design[M].New Jersey:Prentice Hall,1989.
  • 3[3]Ramakrishnan B,Rao S S.A robust optimization approach using Taguchi's loss function for solving nonlinear optimization problems[J].Advances in Design Automation,1991,32(1):241-248.
  • 4[4]Shoemaker A C,Tsui K L,JeffWu C F.Economical experimentation methods for robust design[J].Technometrics,1991,33(4):415-427.
  • 5[5]Belegundu A D,Zhang S.Robustness ofdesign through minimum sensitivity[J].ASME J Mech Des,1992,114:213-217.
  • 6[6]Chen W,Wiecek M M,Zhang J.Quality utility:A compromise programming approach to robust design[J].ASME J Mech Des,1999,121(2):179-187.
  • 7[7]Parkinson A,Sorensen C,Pourhassan N A.A general approach to robust optimal design[J].ASME J Mech Des,1993,115(1):74-80.
  • 8[8]Du X,Chen W.Towards a better understanding of modeling feasibility robustness in engineering design[J].ASME J Mech Des,2000,122:385-394.
  • 9[10]Yu J C,Ishii K.Design for robustness based on manufacturing variation patterns[J].ASME J Mech Des,1998,120:196-202.
  • 10[11]Rao S S,Cao L.Optimum design of mechanical systems involving interval parameters[J].ASME J Mech Des,2002,124:465-472.

共引文献6

同被引文献19

  • 1TAGUCHI G. Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream [M]. New York:ASME, 1993.
  • 2PAPADRAKAKIS M, LAGAROS N D. Reliability- based structural optimization using neural networks and Monte Carlo simulation [J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191 (32) : 3491-3507.
  • 3DU X, CHEN W. Towards a better understanding of modeling feasibility robustness in engineering design [J]. ASME Journal of Mechanical Design, 2000, 122(4) :385-394.
  • 4LEE K, PARK G. Robust optimization considering tolerances of design variables[J]. Computers and Structures, 2001, 79(1) :77-86.
  • 5PARKINSON A, SORENSEN C, POURHASSAN N A. A general approach to robust optimal design [J]. ASME Journal of Mechanical Design, 1993, 115(1) : 74-80.
  • 6GUNAWAN S, AZARM S. A feasibility robust optimization method using sensitivity region concept[J]. ASME Journal of Mechanical Design, 2005, 127(5) :858-865.
  • 7LI M, AZARM S. A new deterministic approach using sensitivity region measures for multi-objective robust and feasibility robust design optimization [J]. ASME Journal of Mechanical Design, 2006, 128 (4) : 874-883.
  • 8ISHIBUCHI H, TANAKA H. Multiobjective programming in optimization of the interval objective function [J ]. European Journal of Operational Research, 1990, 48(2) : 219-225.
  • 9SENGUPTA A, PAL T K, CHAKRABORTY D. Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming [ J ]. Fuzzy Sets and Systems, 2001, 119(1) :129-138.
  • 10RAGSDELL K M, PHILLIPS D T. Optimal design of a class of welded structures using geometric programming [J]. ASME Journal Engineering for Industry, 1976, 98(3) : 1021-1025.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部