期刊文献+

基于DCT和FFT谱熵分析的机械传动系统状态检测与趋势预测 被引量:1

Analysis of Spectral Entropy Based on DCT and FFT and Its Application to the Condition Detection and Tendency Estimate of Mechanical Transmission System
下载PDF
导出
摘要 采用DCT和FFT两种方法分别对同一组机械传动齿轮振动信号进行了时域到频域的变换,应用谱熵分析的方法对变换后的信号进行研究和分析处理,计算了不同转速下不同故障类型的齿轮系统信号谱熵值,给出了不同转速下的二维谱熵分布图,并且对系统的工作状态进行了区别和趋势分析预测。结果表明:DCT变换能更好地将时域信号的特征在频域中集中表现出来,可以更好地将不同状态的机械传动齿轮信号加以区分、分离与聚类;FFT变换能够对机械传动齿轮的工作状态和恶化工作趋势进行分析、估计和预测。两种方法的应用为机械传动及其机械系统的工作状态分析、监控和诊断提供了可靠的手段。 This paper studied and analyzed the vibration signals of gear of a mechanical transmission based on the spectral entropy by using DCT and FFT, the working condition was detected and runing tendency was estimated for the transmission system. The results show that DCT is good at exhibiting the signal features in frequency-domain and is able to distinguish and cluster the different gear signals for mechanical transmission while FFT is clever at analyzing and forecasting the deterioration tendency for gear of mechanical transmission. It provides an dependable approach to detect working condition and diagnose runing tendency for mechanical transmission and mechanical systems.
机构地区 西北工业大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2008年第24期2995-2999,共5页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50575187) 航空科学基金资助项目(01I53073) 陕西省自然科学基金资助项目(2004E219) 西北工业大学研究生创业种子基金资助项目(Z200524)
关键词 DCT FFT 谱熵 机械传动 工作状态 预测 DCT (discrete COS (x) transform) FFT spectral entropy mechanical transmission working condition estimation
  • 相关文献

参考文献7

二级参考文献25

  • 1张文军,谢剑英,殷志明.基于最大似然估计的子带语音去噪的研究[J].通信技术,2003,36(1):1-2. 被引量:3
  • 2邵忍平,黄欣娜,李宗斌.裂纹对齿轮轮齿结构振动的影响[J].机械强度,2004,26(6):629-635. 被引量:17
  • 3刘红星.-[J].中国机械工程,1997,8(3):157-159.
  • 4刘红星,中国机械工程,1997年,8卷,3期,157页
  • 5Yantorno R E, Krishnamachari K R, Lovekin J M, et al. The spectral Autocorrelation peak valley ratio (SAPVR)-A usable speech measure employed as a Co-channel detection system[A]. IEEE Workshop on Intelligent Signal Processing[C]. Hungary, 2001, 5: 193-197.
  • 6Byun K J, Jeong S, Kim H R, et al. Noise whitening-based pitch detection for speech highly corrupted by colored noise[J]. ETRI Journal, 2003, 25(1): 49-51.
  • 7Li Q, Zheng J, Zhou Q, et al. A robust, real-time endpoint detector with energy normalization for ASR in adverse environments[A]. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2001) [C]. Salt Lake City: IEEE, 2001: 233-236.
  • 8Rabiner L R. On the use of autocorrelation analysis for pitch detection[J]. IEEE Trans Acoust Speech Signal Processing, 1977, 25(1): 24-33.
  • 9Seneff S. Real-time harmonic pitch detector[J]. IEEE Trans Acoust Speech Signal Process, 1978, 26(2): 358-365.
  • 10Lin D,Wiseman M,Banievie D,et al.An approach to signal processing and condition-based maintenance for gearboxes subject to tooth failure[J].Mechanical Systems and Signal Processing,2004,18(5):993-1007.

共引文献29

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部