期刊文献+

纳米Au粒子作为直接硼氢化钠-过氧化氢燃料电池阴极催化剂 被引量:3

Performance of Nanosized Au Particle as a Cathode Catalyst for Direct Borohydride-hydrogen Peroxide Fuel Cell
原文传递
导出
摘要 采用浸渍还原法制备了纳米Au/C,并将其用作直接硼氢化钠-过氧化氢燃料电池阴极催化剂.通过X射线衍射(XRD)和透射电镜(TEM)对催化剂进行结构和形貌分析,结果表明10~20nm的纳米Au粒子均匀地分散在VulcanXC-72R碳黑表面上.循环伏安测试表明,在0.5mol·L-1H2SO4和2mol·L-1H2O2混合溶液中,纳米Au/C在0.85V处表现较强的不可逆还原电流.以纳米Au/C为阴极催化剂,AB5储氢合金为阳极催化剂制成直接硼氢化钠-过氧化氢燃料电池.电池在30℃下的最大功率密度可达到78.6mW·cm-2.当电池工作温度升高至50℃时,电池的最大功率密度超过120mW·cm-2.此外,研究了阴极溶液中H2SO4和H2O2浓度对电池性能的影响.当阴极溶液中H2SO4浓度小于0.5mol·L-1时,酸浓度对电池性能影响较大;H2O2浓度对电池性能影响较小.确定了阴极溶液中H2SO4和H2O2的最佳浓度分别为0.5和2mol·L-1. Nanosized Au particles were prepared as a cathode catalyst for the direct borohydride-hydrogen peroxide fuel cell (DBHFC) by impregnation methods. The structure and surface morphology of the carbon-supported gold catalyst (Au/C) were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was found that 10~20 nm Au particles deposited on Vulcan XC-72R carbon black. The cyclic voltammogram (CV) results showed that the onset of reduction current on the Au/C occurred at 0.85 V in 0.5 mol·L^-1 H25O4 and 2 moloL 1 H2O2. Also, a simple DBHFC was presented in which the Au/C was used as the cathode catalyst and a hydrogen storage alloy as the anode catalyst. The maximum power density of 78.6 mW·cm^-2 was obtained at 30℃. When operated at 50 ℃, the DBHFC gave a higher than 120 mW·cm^-2 power density. Furthermore, the effect of H2SO4 and H2O2 concentrations on the per-formance of DBHFC was described. The results exhibited that the performance of DBHFC had a strong dependence on the acid concentrations when H2SO4 concentration was lower then 0.5 mol·L^-1, while the H2O2 concentrations had little influence on the performance of DBHFC. The results showed that the optimum concentrations of H2SO4 and H2O2 were 0.5 and 2 mol·L^-1, respectively.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2008年第24期2675-2680,共6页 Acta Chimica Sinica
关键词 过氧化氢 电还原 浸渍还原 直接硼氢化钠-过氧化氢燃料电池 hydrogen peroxide electro-reduction impregnation direct borohydride-hydrogen peroxide fuel cell
  • 相关文献

参考文献24

  • 1Indig, M. E.; Snyder, R. N. J. Electrochem. Soc. 1962, 109, 1104.
  • 2Amendola, S. C.; Onnerud, P.; Kelly, M. T.; Petillo, P. J.;Sharp-Goldman, S. L.; Binder, M. J. Power Sources 1999, 84, 130.
  • 3Amendola, S. WO 9724774, 1997 [Chem. Abstr. 1997, 127, 151022a].
  • 4Lee, S. M.; Kim, J. H.; Lee, H. H.; Lee, P. S.; Lee, J. Y. J. Electrochem. Soc. 2002, 149(5), A603.
  • 5Wang, Y. G.; Xia, Y. Y. Electrochem. Commun. 2006, 8, 1775.
  • 6冯瑞香,曹余良,艾新平,杨汉西.AgNi合金作为直接硼氢化物燃料电池的阳极催化剂[J].物理化学学报,2007,23(6):932-934. 被引量:11
  • 7Choudhury, N. A.; Raman, R. K.; Sampath, S.; Shukla, A. K. J. Power Sources 2005, 143, 1.
  • 8Miley, G. H.; Luo, N.; Mather, J.; Burton, R.; Hawkins, G.; Gu, L. F.; Byrd, E.; Gimlin, R.; Shrestha, P. J.; Benavides, G.; Laystrom, J.; Carroll, D. J. Power Sources 2007, 165, 509.
  • 9Raman, R. K.; Choudhury, N. A.; Shukla, A. K. Electrochem. Solid State Lett. 2004, 7, A488.
  • 10Bessette, R. R.; Cichon, J. M.; Dischert.; Dow, E. G. J. Power Sources 1999, 80, 248.

二级参考文献40

  • 1Hurdis, E. C.; Romeyn, H. Anal Chem. 1954, 26, 320.
  • 2Yuan, J. C.; Shiller, A. M. Anal. Chem. 1999, 71, 1975.
  • 3Zhang, L. S.; Wong, G. T. F. Talanta 1999, 48, 1031.
  • 4Li, Y. Z.; Townshend, A. Anal. Chim. Acta 1998, 359, 149.
  • 5Razola, S. S.; Ktas, E. A.; Vire, J. C. Analyst 2000, 125,79.
  • 6Lei, C. H.; Zhang, Z. E.; Liu, H. Y. Anal. Chim. Acta 1996, 332, 73.
  • 7Yamamoto, K.; Ohgaru, T.; Torinura, M. Anal. Chim. Acta 2000, 406, 201.
  • 8Karyakin, A. A.; Gitelmacher, O. V.; Karyakina, E. E.Anal. Chem. 1995, 67, 2419.
  • 9Kumar, A.; Malhotra, R. B.; Malhotra, D. Anal. Chim. Acta 2000, 414, 43.
  • 10Nabirahn, N. A.; Vad, R. R. Anal. Lett. 1991, 24, 511.

共引文献32

同被引文献52

  • 1冯瑞香,曹余良,艾新平,杨汉西.AgNi合金作为直接硼氢化物燃料电池的阳极催化剂[J].物理化学学报,2007,23(6):932-934. 被引量:11
  • 2YANG W, YANG S, SUN W, et al. Nanostructured palladium-silver coated nickel foam cathode for magnesium-hydrogen peroxide fuel cells[J]. Electrochimica Acta, 2006, 52(1): 9-14.
  • 3YANG W, YANG S, SUN W, et al. Nanostructured silver catalyzed nickel foam cathode for an aluminum-hydrogen peroxide fuel cell [J]. Journal of Power Sources, 2006, 160(2): 1420-1424.
  • 4GU L, LUO N, MILEY G H. Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell [J]. Journal of Power Sources, 2007, 173: 77-85.
  • 5RAMAN R K, SHUKLA A K.A direct borohydride/hydrogen per- oxide fuel cell with reduced alkali crossover[J]. Fuel Cells, 2007, 7 (3): 225-231.
  • 6CHOUDHURY N A, RAMAN R K, SAMPATH S, et al.An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant [J]. Journal of Power Sources, 2005, 143(1/2): 1-8.
  • 7CAO D, CHAO J, SUN L, et al. Catalytic behavior of Co3O4 in elec- troreduction of H2O2[J]. Journal of Power Sources, 2008, 179: 87-91.
  • 8WU H, WANG C, LIU Z, et al. Influence of operation conditions on direct NaBH4/H2O2 fuel cell performance[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2648-2651.
  • 9HASEGAWA S, SHIMOTANI K, KISHI K, et al. Electricity genera- tion from decomposition of hydrogen peroxide [J]. Electrochemical and Solid-State Letters, 2005, 8(2): A 119-A 121.
  • 10LAO S J, QIN H Y, YE L Q, et al. A development of direct hy- drazine/hydrogen peroxide fuel cell[J]. Journal of Power Sources, 2010, 195: 4135-4138.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部