摘要
从统计力学原理出发,用数值方法研究了三维等方谐振势阱中有限粒子数玻色子系统的化学势及其导数随温度的变化.结果表明,粒子数有限的系统没有一级相变,但在有限温度发生玻色—爱因斯坦凝聚;利用化学势二阶导数的极小值定义的玻色—爱因斯坦凝聚临界温度很好地符合实验结果.
The chemical potential and its differential coefficients as a function of temperature of an ideal system trapped in three dimensions isotropic harmonic traps with an finite number of particles were calculated from the statistical theory. The results show that, there is no phase transition in a system with an finite number of particles, but the Bose-Einstein condensation occurs at a finite temperature. The critical temperatures were well defined by the minimum temperatures of the second derivative of chemical potential, which were in good agreement with the experimental results.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第6期131-134,139,共5页
Journal of Lanzhou University(Natural Sciences)
基金
国家自然科学基金(10704031)
国家基础科学人才培养基金(J0730314)
兰州大学理论物理与数学纯基础科学基金(LZU05001)
甘肃省自然科学基金(3ZS061-A25-035)资助.
关键词
玻色-爱因斯坦凝聚
谐振势
有限粒子数效应
Bose-Einstein condensate
harmonic potential
finite number of particles effect