期刊文献+

Au@SiO_2@LaF_3:Eu纳米核壳结构的制备及其发光性能 被引量:2

Synthesis and Photoluminescence of Au@SiO_2@LaF_3:Eu Nanocomposite
下载PDF
导出
摘要 本文利用化学法合成了Au纳米颗粒、Au@SiO2、以及Au@SiO2@LaF3:Eu的纳米核壳结构,并利用透射电镜、紫外可见吸收谱以及荧光光谱对它们的形貌、吸收和发光性能进行了表征。研究表明:通过控制柠檬酸和氯金酸以及正硅酸乙酯和氨水比例可以对Au纳米颗粒的尺寸以及SiO2层的厚度分别进行调控。当Au纳米颗粒的尺寸和SiO2层厚度增加时,Au表面等离子体共振吸收峰发生红移。在Au@SiO2@LaF3:Eu纳米核壳结构中,Au表面等离子体共振对LaF3:Eu纳米颗粒的发光产生减弱作用。另外,Eu掺杂浓度对Au@SiO2@LaF3:Eu纳米核壳结构的5D0→7F2和5D0→7F1跃迁强度比有很大的影响。 The Au nanoparticles, Au @ SiO2 core-shell nanocomposites, and A @ SiO2 @ LaF3: Eu core-shell nanocomposites were subsequently prepared by the chemical solution route. The morphology, surface plasmon absorption and photoluminescence properties were characterized by transmission electron microscope (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescenee (PL) spectroscopy. It was indicated that the size of Au nanoparticles and the thickness of the SiO2 layer were tuned by the ratio of citric acid/aurichlorohydric acid, and tetraethyl silicate/ammonia, respectively. With the increase of the size of Au nanoparticles and the thickness of SiO2 layer, the surface plasmon absorption of Au nanoparticles was red-shifted. Moreover, the PL intensity of LaF3: Eu in the Au @ SiO2 @ LaF3: Eu core-sheil nanocomposites was suppressed by the surface plasmon resonance of Au. Meanwhile, the Eu doping concentration greatly influenced on the emission intensity ratio of the 5D0→7 F2 and 5D0→7 F1 of the Au@SiO2 @LaF3 :Eu core-shell nanocomposites. Besides, the PL of LaF3 :Eu is different from that of LaF3 :Eu after coated on the Au@SiO2 core shell nanostructure, which also changed with different doses of Eu in LaF3.
出处 《材料科学与工程学报》 CAS CSCD 北大核心 2008年第6期861-864,共4页 Journal of Materials Science and Engineering
基金 973基金资助项目(2007CB613403)
关键词 Au@SiO2@LaF3:Eu 表面等离子体共振 发光 Au@SiO2 @ LaF3 : Eu Au surface plasmon resonance photoluminescence
  • 相关文献

参考文献19

  • 1H. G. Zhu, Z. Ma, S. H. Overbury, S. Dai. Rational design of gold catalysts with enhanced thermal stability: post modification of Au/TiO2 by amorphous SiO2 decoration[J]. Catal. Lett.,2007, 116:128-135.
  • 2M. C. Daniel, D. Astruc. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications nanotechnology[J] toward biology, Chem. Rev. , 2004, catalysis, and 104:293-246.
  • 3M. Akahashi, Y. Miyahara. [J]. Chem, Lett. , 1998, 9:917-918.
  • 4M. S. Yeh, Y. S. Yang, et al[J]. J. Phys. Chem. B. , 1999, 103: 6851-6857.
  • 5A. Henglein. [J]. J. Phys. Chem. B., 1993, 97:5457-5471.
  • 6S. A. Maier, M. L. Brongersma,et al. [J]. Adv. Mater., 2001, 13:1501-1505.
  • 7W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics[J]. Nature, 2003, 424:824-830.
  • 8S. Schultz, D. R. Smith, et al. [J]. Proc. Natl. Acad. Sci. U.S.A. , 2000, 97:996-1001.
  • 9S. J. Oldenburg, C. C. Genick, et al.[J]. Anal Biochem, 2002, 309:109-116.
  • 10M. Matsumoto, H. Yoshimura, et al. [J]. Colloid Polym. Sci. , 1990, 268: 1174-1178.

同被引文献43

  • 1周建国,李振泉,赵凤英,夏树屏,高世扬.均分散球形Y_2O_3:Eu^(3+)纳米晶的制备[J].稀有金属材料与工程,2005,34(6):932-935. 被引量:4
  • 2张伦,黄莉蕾,付晏彬,罗宏雷,施申蕾.纳米Y_2O_3:Eu^(3+)(Y_2O_3)粉体的红外光谱研究[J].中国计量学院学报,2007,18(1):75-78. 被引量:5
  • 3Deepika Kandpal, Suchita Kalele, Kulkarni S K. Synthesis and characterization of silica-gold core-shell ( SiO2 Au) nanoparticles[J]. Pramana J. Phys. , 2007, 69(2) : 277.
  • 4Cobley Claire M, Chen Jingyi, Cho Eun Chul, Wang Lihong V, Xia Younan. Gold nanostructures materials for biomedical applications a class of multifunctional [J]. Chem. Soc. Rev.,2011, 40 : 44.
  • 5Li C R, Mei J, Li S W, Lu N P, Wang L A, Chen B Y, Dong W J. One-pot synthesis of Ag@ SiO2 @ Ag sandwich nanostructures [J]. Nanotechnology, 2010, 21(24): 5602.
  • 6GuoLQ, GuanAH, LinXL, ZhangCL, ChenGN. Preparation of a new core-shell Ag@ SiO2 nanocomposite and its application for fluorescence enhancement [J]. Talanta, 2010, 82: 1696.
  • 7Liu G X, Hong G Y. Synthesis of SiO2/Y2O3 :Eu core-shell materials and hollow spheres [ J ]. J. Solid State Chem. , 2005, 178 : 1647.
  • 8Min Y L, Wan Y, Yu S H. Au@ Y2O3:Eu rare earth oxide hollow sub-microspheres with Encapsulated gold nanoparticles and their optical properties [J]. Solid State Sci. , 2009, 11 : 96.
  • 9Zhang F, Braun Gary B, Shl Y F, Zhang Y C, Sun X H, Reich Norbert O, Zhao D Y, Stucky Galen. Fabrication of Ag@ SiO2@ Y2O3 : Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles [ J ]. J. Am. Chem. Soc. , 2010, 132: 2850.
  • 10Li J G, Li X D, Sun X D, Ishigaki Takamasa. Monodispersed colloidal spheres for uniform Y2O3 : Eu^3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd^3+ doping [J]. J. Phys. Chem. C. , 2008, 112: 11707.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部