期刊文献+

Mo含量对Ti-Mo氢化物的结构及热稳定性的影响 被引量:1

Effect of Mo on the Structure and Thermal Stability of Ti-Mo Hydrides
下载PDF
导出
摘要 采用磁悬浮熔炼技术制备了固溶体合金Ti Mox(x=0.03,0.13,0.25,0.50,1.00,钼钛原子比),室温下活化后的Ti Mox合金在0.02 MPa下迅速吸氢并达到平衡。采用X射线衍射和TG-DSC分析技术对吸氢产物的物相结构和热稳定性进行了测试。作为比较,对吸氢前的合金作了XRD结构分析。结果表明:Ti Mo0.03吸氢后析出大量的Ti H2,并有少量bcc(β-Ti)含氢固溶体存在。x大于0.13时,合金为单一的β-Ti结构,吸氢产物由fcc(γ-Ti)氢化物和β-Ti氢固溶体组成,晶格参数增加至0.330nm,钼含量较少的β-Ti氢固溶体发生相变生成γ-Ti氢化物,Mo含量增加,γ-Ti氢化物含量逐渐减少。β-Ti氢固溶体,γ-Ti氢化物的热解析温度随着Mo含量的增加逐渐降低,说明Mo含量的增加会降低氢化物的稳定性,不利于氢在合金间隙中的储存。 The solid solution alloys TiMox (x = 0. 03, 0. 13, 0. 25, 0. 50, 1. 00, Mo/Ti) were synthesized by electromagnetic levitation technique. In 0.02MPa, the alloys after activation reacted fast with H2 and the alloy hydrides were formed at room temperature. The alloys and their hydrides were investigated hy XRD and thermal properties of the hydrides were studied through TG-DSC analysis. The results show that the alloys form a single hec(β-Ti) phase when x〉0.13. After hydrogenation, besides bcc phase, a new phase Till1.971 (fcc) exists, the phase transformation happens when the lattice parameter is 0. 330nm, and the composition of the new phase decreases as x rises, x= 0.03, the hydride consists in Till2 and Ti-Mo hydrides, and only Ti-Mo hydrides are found when x is over 0.13. The dehydrogenation temperature drops as the Mo content increases, showing that the addition of Mo lowers the thermal stability of Ti-Mo hydrides.
出处 《材料科学与工程学报》 CAS CSCD 北大核心 2008年第6期946-949,共4页 Journal of Materials Science and Engineering
关键词 Ti-Mo 固溶体合金 氢化物 XRD TG-DSC Ti-Mo solid solution alloys hydrides XRD TG-DSC
  • 相关文献

参考文献7

二级参考文献11

共引文献62

同被引文献12

  • 1黄刚,曹小华,龙兴贵,罗顺忠,杨本福,刘文科.钛吸氕氘混合气的同位素效应[J].原子能科学技术,2006,40(B09):44-47. 被引量:1
  • 2王伟伟,龙兴贵.Ti-Mo合金的吸放氢动力学[J].核化学与放射化学,2007,29(2):80-84. 被引量:8
  • 3Glueckauf E, Kitt GP. Hydrogen isotope seperction by chromatography[C]// Proceeding of the interhational symposium on isotope seperation. New York: Wily Interscience, 1957.
  • 4Lasser R, Jones G, Hemmerich JL, et al. The preparative gas chromatographic system for the JET active gas handling system: inactive commissioning[J]. FusTech, 1995, 28(1):681-686.
  • 5Horen AS, Lee NW. Metal hydride based isotope separation-large-scale operations [J]. Fus Tech, 1992, 21:282-286.
  • 6Scogin JH, Poore AS. Startup and operation of a metal hydride based isotope separation process[J]. Fus Tech, 1995, 28: 736-741.
  • 7Angela AA, Schmierer EN, Donald Gettemy, et al. Thermal cycling absorption process (TCAP) : instrument and simulation development status at los alamos national laboratory[J]. Fusion Science and Technology, 2005, 48: 159-162.
  • 8Aldridge FT. Gas chromatographic separation of hydrogen isotopes using metal hydrides [J]. J Less-common Metals, 1985, 105: 131-150.
  • 9Tanaka J, Wiswall RH, Reilly JJ. Hydrogen Isotope Effects in Titanium Alloy Hydrides[J]. Inorg Chem, 1978, 17(2): 498-501.
  • 10Lynch JF, Reilly J J, Tanaka J. The titanium-molybdenum-hydrogen system: isotope effects, thermodynamics, and phase changes[J]. Adv Chem Ser, 1978: 342-365.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部